A novel data-driven approach for personalizing smoking cessation pharmacotherapy

一种新的数据驱动的个性化戒烟药物治疗方法

基本信息

  • 批准号:
    10437438
  • 负责人:
  • 金额:
    $ 7.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2024-02-28
  • 项目状态:
    已结题

项目摘要

PROJECT ABSTRACT Cigarette smoking contributes to one-third of cancer deaths. Approximately 14% of adults in the United States are current tobacco smokers. Though several Food and Drug Administration (FDA)-approved smoking cessation pharmacotherapies exist [e.g., varenicline, bupropion, nicotine replacement therapy (NRT)], utilization rates remain low and a substantial portion of smokers do not respond to existing treatments. A personalized treatment recommendation in which smokers are provided with a smoking cessation pharmacotherapy based on their individual characteristics may improve both utilization of FDA-approved smoking cessation pharmacotherapies and quit success among smokers. Our goal is to develop an algorithm, based on demographic and clinical data assessed prior to treatment, to estimate individual smokers' likely response to FDA-approved pharmacotherapies for smoking cessation, including varenicline, bupropion, and nicotine replacement therapy (NRT). Models will account for the likelihood of adverse effects of medication and non-adherence. Individual estimates of treatment response will be obtained through sophisticated analytic modeling (e.g., machine learning techniques) of existing data from a single, large-scale randomized controlled trial (EAGLES trial conducted by Pfizer and GlaxoSmithKline, United States sample, N=4207). The EAGLES trial provides a rich dataset comparing three FDA-approved medications head-to-head in a large and clinically representative sample. In the EAGLES trial, participants were randomly assigned to receive varenicline (1 mg twice daily), bupropion (150 mg twice daily), NRT patch (21 mg per day with taper), or placebo pill capsules/patches for 12 weeks. Smoking cessation outcomes at weeks 9 through 12 were measured. We propose to use multiple statistical techniques (e.g., machine learning) to optimize a model for predicting an individual's likelihood of specific smoking cessation success in response to each treatment. Consistent with the primary analyses in the EAGLES trial, we will define treatment success as carbon monoxide-confirmed continuous abstinence during weeks 9 through 12. Secondarily, we will also examine continuous abstinence during weeks 9 through 24. We will develop a patient and provider-facing mobile app prototype that implements the best-fitting algorithm and prospectively predicts new patients' likelihood of smoking cessation with various pharmacotherapies. The mobile app will allow a new patient to complete a reduced set of assessments based on the predictors deemed relevant in the final model. The development of an app prototype will position us to complete user testing and refinement in a future study. Finally, we will develop a R package to facilitate implementation of similar models by statisticians working with other disease data.
项目摘要 吸烟导致三分之一的癌症死亡。大约 14% 的美国成年人 是目前的吸烟者。尽管一些食品和药物管理局 (FDA) 批准戒烟 现有药物疗法 [例如伐尼克兰、安非他酮、尼古丁替代疗法 (NRT)]、利用率 仍然很低,而且很大一部分吸烟者对现有治疗没有反应。个性化治疗 建议根据吸烟者的情况提供戒烟药物治疗 个体特征可能会提高 FDA 批准的戒烟药物疗法的利用率 并在吸烟者中取得成功。我们的目标是开发一种基于人口统计和临床数据的算法 在治疗前进行评估,以估计个体吸烟者对 FDA 批准的药物疗法的可能反应 用于戒烟,包括伐尼克兰、安非他酮和尼古丁替代疗法 (NRT)。模型将 考虑药物不良反应和不依从的可能性。治疗的个人估计 响应将通过现有的复杂分析模型(例如机器学习技术)获得 数据来自一项大规模随机对照试验(辉瑞和辉瑞公司进行的 EAGLES 试验) GlaxoSmithKline,美国样本,N=4207)。 EAGLES 试验提供了丰富的数据集,比较了三个 FDA 批准的药物在大量且具有临床代表性的样本中进行了正面对比。在 EAGLES 试验中, 参与者被随机分配接受伐尼克兰(1 毫克,每天两次)、安非他酮(150 毫克,每天两次)、 NRT 贴剂(每天 21 毫克,逐渐递减)或安慰剂药丸胶囊/贴剂,持续 12 周。戒烟 测量第 9 周至第 12 周的结果。我们建议使用多种统计技术(例如, 机器学习)优化模型来预测个人特定戒烟的可能性 对每次治疗的成功反应。与 EAGLES 试验中的主要分析一致,我们将定义 治疗成功,即在第 9 周至第 12 周内持续戒除一氧化碳。 其次,我们还将检查第 9 周至第 24 周期间的持续禁欲情况。我们将培养一名患者 和面向提供商的移动应用程序原型,该原型实现了最佳拟合算法并进行前瞻性预测 新患者通过各种药物疗法戒烟的可能性。该移动应用程序将允许新的 患者根据最终模型中认为相关的预测因素完成一组简化的评估。 应用程序原型的开发将使我们能够在未来的研究中完成用户测试和改进。 最后,我们将开发一个 R 包,以方便统计学家与其他人合作实施类似的模型 其他疾病数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachel Lynn Tomko其他文献

Rachel Lynn Tomko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rachel Lynn Tomko', 18)}}的其他基金

A novel data-driven approach for personalizing smoking cessation pharmacotherapy
一种新的数据驱动的个性化戒烟药物治疗方法
  • 批准号:
    10578721
  • 财政年份:
    2022
  • 资助金额:
    $ 7.54万
  • 项目类别:
Mood, Physiological Arousal, and Alcohol Use
情绪、生理唤醒和饮酒
  • 批准号:
    8453159
  • 财政年份:
    2012
  • 资助金额:
    $ 7.54万
  • 项目类别:
Mood, Physiological Arousal, and Alcohol Use
情绪、生理唤醒和饮酒
  • 批准号:
    8548878
  • 财政年份:
    2012
  • 资助金额:
    $ 7.54万
  • 项目类别:

相似海外基金

Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
  • 批准号:
    10100360
  • 财政年份:
    2024
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
  • 批准号:
    24K04974
  • 财政年份:
    2024
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
  • 批准号:
    2312319
  • 财政年份:
    2023
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
  • 批准号:
    23K01686
  • 财政年份:
    2023
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
  • 批准号:
    23K01692
  • 财政年份:
    2023
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
  • 批准号:
    23K01695
  • 财政年份:
    2023
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
  • 批准号:
    23K01713
  • 财政年份:
    2023
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
  • 批准号:
    23K01715
  • 财政年份:
    2023
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
  • 批准号:
    10585388
  • 财政年份:
    2023
  • 资助金额:
    $ 7.54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了