Brain AnalyzIR: A software platform for improving scientific rigor in functional NIRS statistical analysis
Brain AnalyzIR:用于提高功能 NIRS 统计分析科学严谨性的软件平台
基本信息
- 批准号:10436947
- 负责人:
- 金额:$ 33.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAwardBenchmarkingBiomedical ResearchBlood VesselsBrainBrain imagingChildChildhoodClassificationComputer softwareDataData AnalysesData SetDatabasesDevelopmentElectroencephalographyExcisionExperimental DesignsFailureFeedbackFunctional Magnetic Resonance ImagingFutureGoalsImaging technologyIndividualInfantInfrastructureInstitutesLeadLibrariesLightMagnetic Resonance ImagingMeasuresMetabolicMethodologyMethodsModalityModelingMorphologic artifactsMotionNational Institute of Child Health and Human DevelopmentNational Institute of Neurological Disorders and StrokeNoisePerformancePopulationPropertyPublicationsQuantitative EvaluationsReceiver Operating CharacteristicsRecommendationRecording of previous eventsRegression AnalysisReportingResourcesRestScanningSensitivity and SpecificitySignal TransductionSocial InteractionSourceStandardizationStatistical Data InterpretationStatistical MethodsStatistical ModelsStructureTailTechniquesTestingTime Series AnalysisTrainingUnited States National Institutes of HealthUpdateVariantWalkingWorkalgorithmic methodologiesbaseblood oxygen level dependentcerebral hemodynamicsdesignexperiencefunctional improvementfunctional near infrared spectroscopyhemodynamicsimage reconstructionimprovedinnovationinterestneuroimagingnovelopen sourceportabilityrelating to nervous systemsoftware development
项目摘要
Abstract
Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging modality that uses low-levels of
light to measure evoked hemodynamic changes in the brain. This technique has been growing in popularity
over the last several decades due its versatility and portability and the applicability of this technique in unique
experimental situations and subject populations, such as studies on children, infants, or using ecologically valid
experimental designs (walking, social interaction, etc). As the number of end-users in this field grows, it is
important to establish scientifically rigorous best practices for analysis and interpretation of these studies. A
fallacy of the fNIRS field has been the direct import of methods and interpretations from other modalities (e.g.
functional MRI) without proper adaptation and generalization for the fNIRS-specific noise and signal properties
of the data. Furthermore, to date, the development of many fNIRS methods has been based on ad-hoc
observations of these algorithms under specific datasets. As a result, end-users often use methods designed
for statistical assumptions that do not match their own data. Failure to use proper statistical models or unmet
assumptions often results in high false-positive rates and poor scientific rigor and this has been the case in
many prior fNIRS studies. The goal of this Biomedical Research Group (BRG-R01) project is to establish
current best practices for fNIRS analysis and an infrastructure for future development based on quantitative
comparisons of methodologies via receiver operator characteristics analysis, quantification of bias, etc. This
project will also establish an open-source fNIRS database to allow characterization and classification of the
various properties of fNIRS signals and to quantify their effect on statistical models. Our group has a long
history of fNIRS analysis and open-source software development over the last 15 years and is considered one
of the top labs in fNIRS analysis. The specific aims of this project are:
Aim 1. Development of an open fNIRS database and benchmarking platform for testing and characterizing the
development of new algorithms and statistical methods.
Aim 2. Determination of best practices for fNIRS analysis under general and categorized noise models.
Aim 3. Continued development and improvement of fNIRS-specific analysis models with focus on end-user
needs and feedback.
Aim4. Dissemination and training of methods.
摘要
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced spatiotemporal resolution imaging of neuronal activity using joint electroencephalography and diffuse optical tomography.
- DOI:10.1117/1.nph.8.1.015002
- 发表时间:2021-01
- 期刊:
- 影响因子:5.3
- 作者:Cao J;Huppert TJ;Grover P;Kainerstorfer JM
- 通讯作者:Kainerstorfer JM
Investigation of the sensitivity-specificity of canonical- and deconvolution-based linear models in evoked functional near-infrared spectroscopy.
研究诱发功能近红外光谱中基于规范和反卷积的线性模型的灵敏度特异性。
- DOI:10.1117/1.nph.6.2.025009
- 发表时间:2019
- 期刊:
- 影响因子:5.3
- 作者:Santosa,Hendrik;Fishburn,Frank;Zhai,Xuetong;Huppert,TheodoreJ
- 通讯作者:Huppert,TheodoreJ
Using anatomically defined regions-of-interest to adjust for head-size and probe alignment in functional near-infrared spectroscopy.
- DOI:10.1117/1.nph.7.3.035008
- 发表时间:2020-07
- 期刊:
- 影响因子:5.3
- 作者:Zhai X;Santosa H;Huppert TJ
- 通讯作者:Huppert TJ
Brain activation patterns underlying upper limb bilateral motor coordination in unilateral cerebral palsy: an fNIRS study.
- DOI:10.1111/dmcn.14458
- 发表时间:2020-05
- 期刊:
- 影响因子:3.8
- 作者:de Campos AC;Sukal-Moulton T;Huppert T;Alter K;Damiano DL
- 通讯作者:Damiano DL
Quantitative comparison of correction techniques for removing systemic physiological signal in functional near-infrared spectroscopy studies.
- DOI:10.1117/1.nph.7.3.035009
- 发表时间:2020-07
- 期刊:
- 影响因子:5.3
- 作者:Santosa H;Zhai X;Fishburn F;Sparto PJ;Huppert TJ
- 通讯作者:Huppert TJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Theodore James Huppert其他文献
Theodore James Huppert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Theodore James Huppert', 18)}}的其他基金
Brain AnalyzIR: A software platform for improving scientific rigor in functional NIRS statistical analysis
Brain AnalyzIR:用于提高功能 NIRS 统计分析科学严谨性的软件平台
- 批准号:
10203962 - 财政年份:2019
- 资助金额:
$ 33.53万 - 项目类别:
Brain AnalyzIR: A software platform for improving scientific rigor in functional NIRS statistical analysis
Brain AnalyzIR:用于提高功能 NIRS 统计分析科学严谨性的软件平台
- 批准号:
9797359 - 财政年份:2019
- 资助金额:
$ 33.53万 - 项目类别:
Imaging and modeling the biomechanics of large cerebral blood vessels using high-speed dynamic MRI
使用高速动态 MRI 对大脑血管的生物力学进行成像和建模
- 批准号:
9506007 - 财政年份:2017
- 资助金额:
$ 33.53万 - 项目类别:
Imaging and modeling the biomechanics of large cerebral blood vessels using high-speed dynamic MRI
使用高速动态 MRI 对大脑血管的生物力学进行成像和建模
- 批准号:
9370044 - 财政年份:2017
- 资助金额:
$ 33.53万 - 项目类别:
Development of a Hyperspectral FD-NIRS Device for Muscle Physiology
用于肌肉生理学的高光谱 FD-NIRS 设备的开发
- 批准号:
9277459 - 财政年份:2016
- 资助金额:
$ 33.53万 - 项目类别:
Development of a Hyperspectral FD-NIRS Device for Muscle Physiology
用于肌肉生理学的高光谱 FD-NIRS 设备的开发
- 批准号:
9182006 - 财政年份:2016
- 资助金额:
$ 33.53万 - 项目类别:
Characterization of Brain Noise using Multimodal Mutual Information
使用多模态互信息表征脑噪声
- 批准号:
8250389 - 财政年份:2011
- 资助金额:
$ 33.53万 - 项目类别:
Characterization of Brain Noise using Multimodal Mutual Information
使用多模态互信息表征脑噪声
- 批准号:
8082320 - 财政年份:2011
- 资助金额:
$ 33.53万 - 项目类别:
Characterization of Brain Noise using Multimodal Mutual Information
使用多模态互信息表征脑噪声
- 批准号:
8425020 - 财政年份:2011
- 资助金额:
$ 33.53万 - 项目类别:
A Cerebral Functional Unit Model for Multimodal Imaging of Neurovascular Coupling
用于神经血管耦合多模态成像的脑功能单元模型
- 批准号:
7860674 - 财政年份:2009
- 资助金额:
$ 33.53万 - 项目类别:
相似海外基金
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Cooperative Agreement
NSF Engines Development Award: Building an sustainable plastics innovation ecosystem in the Midwest (MN, IL)
NSF 引擎发展奖:在中西部(明尼苏达州、伊利诺伊州)建立可持续塑料创新生态系统
- 批准号:
2315247 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Cooperative Agreement
NSF Engines Development Award: Creating climate-resilient opportunities for plant systems (NC)
NSF 发动机开发奖:为工厂系统创造气候适应机会 (NC)
- 批准号:
2315399 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Cooperative Agreement
International Partnering Award: Using AI to assess senescence and mitochondrial morphology in calcifying VSMCs
国际合作奖:利用人工智能评估钙化 VSMC 的衰老和线粒体形态
- 批准号:
BB/Y513982/1 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Durham University
2024 年开放访问区块奖 - 杜伦大学
- 批准号:
EP/Z531480/1 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Goldsmiths College
2024 年开放获取区块奖 - 金史密斯学院
- 批准号:
EP/Z531509/1 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Research Grant
Open Access Block Award 2024 - John Innes Centre
2024 年开放访问区块奖 - 约翰·英尼斯中心
- 批准号:
EP/Z53156X/1 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Research Grant
Open Access Block Award 2024 - London School of Economics & Pol Sci
2024 年开放获取区块奖 - 伦敦政治经济学院
- 批准号:
EP/Z531625/1 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Oxford Brookes University
2024 年开放获取区块奖 - 牛津布鲁克斯大学
- 批准号:
EP/Z531728/1 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Research Grant
Open Access Block Award 2024 - The Francis Crick Institute
2024 年开放获取区块奖 - 弗朗西斯·克里克研究所
- 批准号:
EP/Z531844/1 - 财政年份:2024
- 资助金额:
$ 33.53万 - 项目类别:
Research Grant














{{item.name}}会员




