Molecular mechanism of cardiac inflammation and dysfunction in Pseudomonas aeruginosa infection
铜绿假单胞菌感染心脏炎症和功能障碍的分子机制
基本信息
- 批准号:10436279
- 负责人:
- 金额:$ 44.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcuteAnti-Inflammatory AgentsApoptosisApoptoticBacteriaBacterial InfectionsBacterial PneumoniaBasic ScienceCCL2 geneCardiacCardiac MyocytesCell DeathCellsCessation of lifeComplicationDataDevelopmentEnvironmentFibroblastsFibrosisFunctional disorderGenesGoalsGram-Negative BacteriaHealthcareHeartHeart failureHumanImmuneImmune responseIn VitroInfectionInfiltrationInflammationInflammation MediatorsInflammatoryIntensive Care UnitsInterleukin-10Knockout MiceLaboratoriesLeadLinkMacrophage ActivationMechanical ventilationMediatingMicroRNAsMissionModelingMolecularMorbidity - disease rateMusMuscle CellsMyeloid CellsMyocardialMyocardial dysfunctionMyocarditisNosocomial InfectionsNosocomial pneumoniaPatientsPatternPhenotypePneumoniaPopulationPreventionProductionPseudomonas aeruginosaPseudomonas aeruginosa infectionPublic HealthRegulationRegulatory PathwayResearchRoleSepsisSignal PathwayStressTestingTissuesTransforming Growth Factor betaVentricular FunctionVirulentcoronary fibrosiscostcytokinedifferential expressionexosomeheart damageheart electrical activityheart functionheart preservationhigh riskin vivoinduced pluripotent stem cellmacrophagemigrationmonocytemortalitymouse modelnovelnovel strategiesnovel therapeuticspathogenpreventprogramsresponseseptic patientssystemic inflammatory responsetraffickingventilator-associated pneumonia
项目摘要
Nosocomial infection is a persistent problem in healthcare today and in the intensive care units, accounting for
over 200,000 deaths annually. Ventilator-associated pneumonia (VAP) develops as a complication in 8 – 28%
of patients receiving mechanical ventilation, represents approximately 50% of ICU acquired infections.
Specifically Pseudomonas aeruginosa (P.a.) infections account for up to 20% of all cases of hospital acquired
pneumonia with mortality rate of ~30%. More than 60% of sepsis patients in ICU show evidence of cardiac
dysfunction and acute bacterial pneumonia stresses the heart and suppresses ventricular function. Also many
bacterial virulent factors activate TLRs in cardiomycytes and suppress the myocyte contractile function.
Although cardiac dysfunction caused by inflammation during infection is thought to be the key driver of
mortality in ICU pneumonia patients, broad anti-inflammatories do not effectively prevent death. Thus,
understanding the cellular components involved in the cardiac inflammation and their impact on myocyte and
fibroblast function would assist in the prevention of cardiac dysfunction in pneumonia patients. We have
discovered that the infiltration of activated myeloid cells into the hearts of P.a. infected mice induces cardiac
inflammation and apoptosis that leads to phenotypic switch of cardiac resident macrophages and causes
cardiac damage. Specifically, we identified that P.a. infection induces miR155 expression which targets many
genes required for myocyte contractile function. We are the first to discover the link between cardiac
macrophages (effector molecule miR155) and myocyte contractile dysfunction and fibroblast activation
(fibrosis) during bacterial infection. Thus we hypothesize that the infiltration of activated myeloid cells shifts
anti-fibrotic cardiac resident macrophage (MHC-IIlow) into pro-fibrotic macrophages (MCH-IIhigh) through cardiac
inflammation and apoptosis, which results in myocyte contractile dysfunction and fibroblast activation. The
miR155 functions as a global regulator of myeloid cell infiltration and thus prevents the cardiac macrophage
phenotypic switch. The goals of this research program are to 1) Define the molecular mechanism of myocyte
contractile dysfunction and fibroblast activation during P. aeruginosa infection. 2) Investigate the role of cardiac
macrophages in activation of intrinsic signaling pathways that cause cardiac dysfunction during sepsis. 3)
Determine whether localized inhibition of cardiac inflammation preserves the heart function in invasive bacterial
infections. We will use human inducible pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), human
cardiac fibroblast, and human monocyte derived macrophages to test our hypothesis in vitro. For in vivo
studies we will use knockout mouse models to accomplish our goals. Overall, the mission of my laboratory is to
identify the important regulatory pathways and effector molecules to create therapies for cardiac dysfunction in
pneumonia patients. Our basic research discoveries will jump-start the development new approaches and
drugs to treat cardiac dysfunction in sepsis.
医院感染是当今医疗保健和重症监护病房的一个持续存在的问题
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murugesan Rajaram其他文献
Murugesan Rajaram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murugesan Rajaram', 18)}}的其他基金
Role of Aging on cardiac macrophage dysfunction and heart failure during infection
衰老对感染期间心脏巨噬细胞功能障碍和心力衰竭的作用
- 批准号:
10620781 - 财政年份:2022
- 资助金额:
$ 44.39万 - 项目类别:
Role of Aging on cardiac macrophage dysfunction and heart failure during infection
衰老对感染期间心脏巨噬细胞功能障碍和心力衰竭的作用
- 批准号:
10447405 - 财政年份:2022
- 资助金额:
$ 44.39万 - 项目类别:
Mechanisms of Cardioprotection by the Innate Immune System During Influenza Virus Infections
流感病毒感染期间先天免疫系统的心脏保护机制
- 批准号:
9809007 - 财政年份:2019
- 资助金额:
$ 44.39万 - 项目类别:
Molecular mechanism of cardiac inflammation and dysfunction in Pseudomonas aeruginosa infection
铜绿假单胞菌感染心脏炎症和功能障碍的分子机制
- 批准号:
10654794 - 财政年份:2019
- 资助金额:
$ 44.39万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 44.39万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 44.39万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 44.39万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 44.39万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 44.39万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 44.39万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 44.39万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 44.39万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 44.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 44.39万 - 项目类别:
Operating Grants