Personalized Task-Based Respiratory Motion Correction for Low-Dose PET/CT
基于任务的个性化低剂量 PET/CT 呼吸运动校正
基本信息
- 批准号:10436864
- 负责人:
- 金额:$ 62.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-02 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAlgorithmsBreathingChestClinicalClinical TrialsCollaborationsComputer softwareDataDetectionDevelopmentDimensionsDoseEvaluationHumanImageIndustrializationLeadLocationLungMagnetic Resonance ImagingMalignant NeoplasmsMapsMethodsMotionNoiseOutcomes ResearchPatientsPatternPerformancePhasePlayPositron-Emission TomographyProtocols documentationRadiation Dose UnitResearchRoleSignal TransductionSpiral Computed TomographyTestingTimeTranslatingTranslationsVariantX-Ray Computed Tomographyattenuationbasecancer imagingcancer therapydigitalexpirationimprovedindividual patientindustry partnerinnovationneglectnovelpersonalized strategiesprototypepublic health relevancerespiratoryresponsesimulationtime usetreatment responsetumor
项目摘要
Project Abstract
PET plays an important role in cancer management. However, image blurring and mismatched attenuation
correction due to respiratory motion can substantially degrade detection efficacy and quantification accuracy
for tumors located in the lung and abdomen. Existing motion correction methods might provide satisfactory
results for patients with regular breathing patterns, which account for about 60% of patients. However, for the
remaining 40% of patients with irregular breathing patterns, these methods neglect the major effects of
intra-gate motion due to inter-cycle and intra-cycle motion variations. In addition, as dose reduction in
PET imaging has become increasingly important, existing motion correction methods typically amplify image
noise and degrade their performances on low-count data. Another important challenge is the mismatch
between CT and PET that limits phase-matched attenuation correction for every gated PET image using a
single helical CT. Therefore, to achieve accurate quantification for evaluation of response to cancer therapy
and reliable detection of tumors using low-dose PET protocols, particularly for patients with breathing pattern
changes including variable motion amplitude, baseline variation, and amplitude variation, it is critical to
develop personalized motion correction strategies optimized for individual patient's breathing patterns
and the imaging task to eliminate intra-gate motion and mismatched attenuation correction for low-
dose PET. Extending our existing collaboration, Yale and Siemens form an ideal team to optimize a
comprehensive solution to correct for breathing pattern variability with intrinsically phase-matched attenuation
correction for both regular and irregular breathers in the first two Aims. We will then develop and translate a
personalized strategy to automatically identify the most time-effective motion correction approach for each
individual patient, considering task and breathing pattern. We will optimize our personalized motion correction
methods and strategy particularly for low-count PET data, aiming to reduce radiation dose to 25%-50% of the
dose in current PET protocols. The outcome of this research will be a comprehensive motion correction
package including four correction approaches and a personalized strategy that is automatically optimized for
each individual patient. This development will be ready to translate to commercial PET/CT scanners and
clinical end-users. As existing motion correction methods only apply to ~60% regular breathers, but
have substantial limitation for the remaining ~40% irregular breathers, our proposed development can
provide a unified motion correction framework for all patients with both regular and irregular
breathing. This fast translation with industrial partners can lead to a significant and timely clinical
impact for cancer management.
项目摘要
宠物在癌症治疗中扮演着重要的角色。然而,图像模糊和不匹配的衰减
呼吸运动引起的校正会大大降低检测效率和量化准确性
对于位于肺部和腹部的肿瘤。现有的运动校正方法可能会提供令人满意的
结果呼吸模式规则的患者,约占患者的60%。然而,对于
其余40%的呼吸模式不规律的患者,这些方法忽略了
由于周期间和周期内运动变化而导致的门内运动。此外,由于减少了
PET成像已经变得越来越重要,现有的运动校正方法通常是放大图像
噪声,并降低了它们在低计数数据上的性能。另一个重要的挑战是不匹配。
限制每个门控PET图像的相位匹配衰减校正
单层螺旋CT。因此,要实现对癌症治疗反应的准确量化评价
使用低剂量PET方案可靠地检测肿瘤,特别是对于有呼吸模式的患者
变化包括可变运动幅度、基线变化和幅度变化,这是至关重要的
开发针对个别患者呼吸模式进行优化的个性化运动矫正策略
以及消除门内运动和失配衰减校正的成像任务
剂量PET。扩展我们现有的合作,耶鲁和西门子组成了一个理想的团队,以优化
利用固有的相位匹配衰减校正呼吸模式变异性的综合解决方案
在前两个目标中都纠正了规则和不规则的呼吸。然后,我们将开发并翻译一个
个性化策略,自动为每个人确定最及时有效的运动校正方法
个别患者,考虑任务和呼吸模式。我们将优化我们的个性化运动矫正
方法和策略,特别是对于低计数PET数据,目标是将辐射剂量降低到25%-50%
目前的PET方案中的剂量。这项研究的结果将是一个全面的运动矫正
包括四种纠正方法和一个自动优化的个性化策略的包
每个单独的病人。这一开发将准备好转化为商业PET/CT扫描仪和
临床终端用户。由于现有的运动校正方法只适用于~60%的常规呼吸,但
对于剩余的~40%的不规则呼吸有很大的限制,我们建议的开发可以
为所有规则和不规则的患者提供统一的运动矫正框架
呼吸。与行业合作伙伴的这种快速转换可以带来重要且及时的临床
对癌症管理的影响。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MCP-Net: Introducing Patlak Loss Optimization to Whole-body Dynamic PET Inter-frame Motion Correction.
MCP-Net:将 Patlak 损失优化引入全身动态 PET 帧间运动校正。
- DOI:10.1109/tmi.2023.3290003
- 发表时间:2023
- 期刊:
- 影响因子:10.6
- 作者:Guo,Xueqi;Zhou,Bo;Chen,Xiongchao;Chen,Ming-Kai;Liu,Chi;Dvornek,NichaC
- 通讯作者:Dvornek,NichaC
TAI-GAN: Temporally and Anatomically Informed GAN for Early-to-Late Frame Conversion in Dynamic Cardiac PET Motion Correction.
TAI-GAN:用于动态心脏 PET 运动校正中早期到晚期帧转换的时间和解剖学信息 GAN。
- DOI:10.1007/978-3-031-44689-4_7
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Guo,Xueqi;Shi,Luyao;Chen,Xiongchao;Zhou,Bo;Liu,Qiong;Xie,Huidong;Liu,Yi-Hwa;Palyo,Richard;Miller,EdwardJ;Sinusas,AlbertJ;Spottiswoode,Bruce;Liu,Chi;Dvornek,NichaC
- 通讯作者:Dvornek,NichaC
Patient motion correction for dynamic cardiac PET: Current status and challenges.
动态心脏 PET 的患者运动校正:现状和挑战。
- DOI:10.1007/s12350-018-01513-x
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Lu,Yihuan;Liu,Chi
- 通讯作者:Liu,Chi
MCP-Net: Inter-frame Motion Correction with Patlak Regularization for Whole-body Dynamic PET.
MCP-Net:针对全身动态 PET 的采用 Patlak 正则化的帧间运动校正。
- DOI:10.1007/978-3-031-16440-8_16
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Guo,Xueqi;Zhou,Bo;Chen,Xiongchao;Liu,Chi;Dvornek,NichaC
- 通讯作者:Dvornek,NichaC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chi Liu其他文献
Chi Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chi Liu', 18)}}的其他基金
Multi-isotope Hybrid PET/CT Imaging of Peripheral Artery Disease in Diabetes
糖尿病周围动脉疾病的多同位素混合 PET/CT 成像
- 批准号:
10586846 - 财政年份:2022
- 资助金额:
$ 62.82万 - 项目类别:
Development of advanced cardiac SPECT imaging technologies
先进心脏 SPECT 成像技术的开发
- 批准号:
10064473 - 财政年份:2020
- 资助金额:
$ 62.82万 - 项目类别:
Generation of parametric images for FDG PET using dual-time-point scans
使用双时间点扫描生成 FDG PET 参数图像
- 批准号:
9896329 - 财政年份:2020
- 资助金额:
$ 62.82万 - 项目类别:
Development of advanced cardiac SPECT imaging technologies
先进心脏 SPECT 成像技术的开发
- 批准号:
10221049 - 财政年份:2020
- 资助金额:
$ 62.82万 - 项目类别:
Generation of parametric images for FDG PET using dual-time-point scans
使用双时间点扫描生成 FDG PET 参数图像
- 批准号:
10117077 - 财政年份:2020
- 资助金额:
$ 62.82万 - 项目类别:
Development of advanced cardiac SPECT imaging technologies
先进心脏 SPECT 成像技术的开发
- 批准号:
10442757 - 财政年份:2020
- 资助金额:
$ 62.82万 - 项目类别:
Development of advanced cardiac SPECT imaging technologies
先进心脏 SPECT 成像技术的开发
- 批准号:
10673649 - 财政年份:2020
- 资助金额:
$ 62.82万 - 项目类别:
SPECT Imaging of Peripheral Vascular Disease
周围血管疾病的 SPECT 成像
- 批准号:
10460368 - 财政年份:2019
- 资助金额:
$ 62.82万 - 项目类别:
SPECT Imaging of Peripheral Vascular Disease
周围血管疾病的 SPECT 成像
- 批准号:
10248379 - 财政年份:2019
- 资助金额:
$ 62.82万 - 项目类别:
SPECT Imaging of Peripheral Vascular Disease
周围血管疾病的 SPECT 成像
- 批准号:
10006027 - 财政年份:2019
- 资助金额:
$ 62.82万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 62.82万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 62.82万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 62.82万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 62.82万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 62.82万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 62.82万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 62.82万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 62.82万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 62.82万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 62.82万 - 项目类别:
Continuing Grant