Design, synthesis and application of long wavelength fluorophores for bioimaging
生物成像长波长荧光团的设计、合成及应用
基本信息
- 批准号:10437616
- 负责人:
- 金额:$ 6.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAffectBiologicalBiologyCalciumCalcium ionCardiac MyocytesCell membraneCellsConsumptionDevelopmentDyesElectronsElectrophysiology (science)EventExhibitsExtracellular SpaceFluorescent DyesFluorescent ProbesGeneticGoalsHydrophobicityImageIndividualLengthLightMeasurementMeasuresMembraneMembrane PotentialsMethodsMolecularNeuronsPhototoxicityPopulationRhodamineRouteSeriesSignal TransductionStructureSystemTechniquesTechnologyTimeVertebral columnWorkXanthenesabsorptionbioimagingcell behaviorcombatcomputer studiesdesignexperimental studyfluorophorefunctional groupimaging agentimaging studyin vivomedication safetynew technologyoptical spectrapatch clampredshiftsafety studytriplet stateuptake
项目摘要
Project Summary
Neurons and cardiomyocytes utilize rapid changes in membrane potential for cellular signaling. Understanding how
changes in membrane potential affect cell behavior across a population of neurons or cardiomyocytes is an important
challenge in biology. Widely used techniques to measure membrane potential, either directly or indirectly, consist of patch
clamp electrophysiology and calcium ion imaging agents. Using patch clamp electrophysiology to measure membrane
potential results in accurate measurements of membrane potential on the timescale of the action potentials. However, these
experiments are limited to a single cell membrane, which precludes using patch clamp electrophysiology to study larger cell
populations. Calcium ion imaging agents are widely used, as it has a higher throughput and is less invasive than patch clamp
electrophysiology. By measuring temporary changes in calcium ion concentrations, we are able to indirectly measure
changes in membrane potential. Unfortunately, a major drawback in this technique is the long durations of calcium ion
uptake (10-100 ms) found during a neuronal action potential, which is significantly longer than the actual action potential
itself (1-2 ms). This our ability to understand cell behavior and how it relates to these rapid signaling events.
To address this challenge, our group has developed several different fluorescent probes called VoltageFluor dyes to
measure these rapid changes in membrane potential. The VoltageFluor dyes consist of a fluorescent xanthene core tethered
to a hydrophobic molecular wire. The molecular wire localizes in the cell membrane while the xanthene core orients itself
in the extracellular space. Using this system, we can measure rapid changes in membrane potential in large populations of
cells on the same time scale as the action potentials themselves.
While our previous VoltageFluors work as intended, we wish to develop new VoltageFluors that emit light in the near
infrared. A red-shifted emission spectrum would allow these VoltageFluor dyes to be used in vivo as well as in conjunction
with other indicators that emit light at <600 nm. To accomplish this goal, we will develop new VoltageFluor dyes that
contain electron withdrawing groups in the xanthene backbone. In accordance with Dewar’s rule, the inclusion of electron
withdrawing groups will result in a red-shifted absorption and emission spectra. This hypothesis is supported by
computational studies we have undertaken. The planned syntheses of these xanthene cores will also be more robust and
tolerant of various functional groups than the syntheses of our previous dimethylcarbon and dimethylsilicon VoltageFluor
dyes.
In comparison to our previously synthesized VoltageFluor dyes that utilize a dimethylcarbon and dimethylsilicon
backbone in the xanthene core, the electron withdrawing groups found in the proposed VoltageFluors offer new functional
handles that can easily be diversified. This expands the range of applications that these dyes can be utilized for, including
tethering triplet state quenchers to the xanthene core and using genetic targeting techniques to localize these VoltageFluors
in specific cells. We also anticipate that the facile diversification of the xanthene core will mean that these dyes will be more
broadly applicable. By synthesizing these dyes without the molecular wire, we also anticipate that we will be able to use
this technology in calcium ion imaging studies.
项目摘要
神经元和心肌细胞利用膜电位的快速变化进行细胞信号传导。了解如何
膜电位的变化影响整个神经元或心肌细胞群体的细胞行为是一个重要的
生物学的挑战广泛使用的直接或间接测量膜电位的技术包括贴片法,
钳位电生理学和钙离子显像剂。膜片钳电生理技术在膜测量中的应用
电位导致在动作电位的时间尺度上精确测量膜电位。但这些
实验仅限于单细胞膜,这排除了使用膜片钳电生理学来研究更大的细胞
人口。钙离子显像剂由于具有较高的通量和较膜片钳更小的创伤性而被广泛应用
电生理学通过测量钙离子浓度的暂时变化,我们能够间接测量
膜电位的变化。不幸的是,该技术的主要缺点是钙离子的长持续时间
在神经元动作电位期间发现的摄取(10-100 ms),其显著长于实际动作电位
(1-2毫秒)。这是我们理解细胞行为的能力,以及它与这些快速信号事件的关系。
为了应对这一挑战,我们的团队开发了几种不同的荧光探针,称为VoltageFluor染料,
测量这些膜电位的快速变化。VoltageFluor染料由一个荧光氧杂蒽核心组成,
疏水分子线。分子线定位在细胞膜中,而氧杂蒽核心自身定向
在细胞外空间。使用这个系统,我们可以测量大群体的膜电位的快速变化,
与动作电位本身的时间尺度相同。
虽然我们以前的VoltageFluors按预期工作,但我们希望开发新的VoltageFluors,
红外线红移的发射光谱将允许这些VoltageFluor染料在体内使用以及结合
与其它在<600 nm处发光的指示剂一起使用。为了实现这一目标,我们将开发新的VoltageFluor染料,
在咕吨骨架中含有吸电子基团。根据杜瓦规则,
吸收基团将导致吸收和发射光谱的红移。这一假设得到了
我们进行的计算研究。这些咕吨核的计划合成也将更加稳健,
比我们以前合成的二甲基碳和二甲基硅更耐受各种官能团
染料。
与我们先前合成的利用二甲基碳和二甲基硅的VoltageFluor染料相比,
在氧杂蒽核心的骨架中,在所提出的VoltageFluors中发现的吸电子基团提供了新的功能性
可以轻松实现多样化的手柄。这扩大了这些染料可用于的应用范围,包括
将三重态猝灭剂拴系到咕吨核心,并使用遗传靶向技术定位这些VoltageFluors
在特定的细胞中。我们还预计,氧杂蒽核的容易多样化将意味着这些染料将更多地用于染料。
广泛适用。通过在没有分子导线的情况下合成这些染料,我们还预计我们将能够使用
这项技术在钙离子成像研究中的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nels Gerstner其他文献
Nels Gerstner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Research Grant