Mechanistic studies of RNA-targeting CRISPR systems
RNA靶向CRISPR系统的机制研究
基本信息
- 批准号:10437863
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-08 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelesAlternative SplicingBacteriophagesBasic ScienceBiochemicalBioinformaticsBiologicalBiological AssayBiologyBiophysicsBiotechnologyCRISPR/Cas technologyCell physiologyCellsClustered Regularly Interspaced Short Palindromic RepeatsCodeCollaborationsCommunicationComplexComplex MixturesCoupledCryoelectron MicroscopyDNADataDetectionDiagnosticDiscriminationDiseaseEngineeringEnzymesFamilyFoundationsFutureGene Expression RegulationGenerationsGeneticGenetic EngineeringGenomeGenome engineeringGoalsGuide RNAHumanImmuneInvadedLaboratoriesLifeLightMammalian CellMediatingMediator of activation proteinMethodsMolecularMolecular StructureNatureNucleic AcidsPathway interactionsProcessProgram DevelopmentProtein EngineeringProteinsRNARNA InterferenceRNA SplicingRegulationReportingResolutionRibonucleasesScienceSpecificityStructureStructure-Activity RelationshipSystemTechniquesTechnologyTherapeuticTranscriptTranslational RegulationTranslationsVariantViral VectorVisualizationWorkadaptive immunitybasebiophysical techniquescell typecellular targetingdesignendonucleasegene therapygenetic approachgenome editingimprovedin vivoinsightknock-downnext generationnovelnucleasenucleic acid detectionprogramspublic health relevancesmall hairpin RNAstructural biologytechnology developmenttherapeutic RNAtherapeutic developmenttooltraffickingtranscriptome
项目摘要
Abstract
Bacterial life employs diverse immune mechanisms to protect themselves against predatory phage, which are
thought to outnumber them by ten to one. CRISPR systems in particular engage their constituent Cas
nucleases with programmable guide RNAs to target invading nucleic acids, endowing the host cell with
adaptive immunity. They can be divided into six broad types, and the Type VI Cas13 systems contain the only
known CRISPR nucleases that exclusively target RNA. CRISPR systems have been broadly adapted as
genetic engineering technologies, and over the last few years, platforms based on Type II Cas9 have
significantly accelerated basic research and biotechnology. Much like Cas9 for DNA targeting, Cas13 enzymes
can be adapted into a modular and efficient platform for RNA targeting in cells, greatly advancing the RNA
manipulation toolbox. However, many Cas13 enzymes are limited by variable and unpredictable activity, a
challenge that has limited RNA interference technologies. More broadly speaking, a central problem in the
genome and transcriptome engineering field is predicting robust and generalizable cleavage efficiency and
specificity across different target nucleic acids and cell types within newly developed nuclease effectors.
Recently, the Hsu lab reported the discovery of a subtype of Cas13, the Cas13d system, which is significantly
smaller, more efficient, and more specific than other Cas13 subtypes or short hairpin RNAs for RNA
interference and manipulation of alternative splicing. The Lyumkis lab recently leveraged state-of-the-art cryo-
electron microscopy (cryo-EM) advances to solve high-resolution structures of Cas13d bound to guide RNA
and target RNA. However, there are gaps in our understanding of Cas13d molecular structure and function and
disconnects between the molecular/structural biology defining Cas13d activity and what is observed in
mammalian cells in transcriptome engineering efforts. The overarching goal is to elucidate the diverse
mechanisms of CRISPR-Cas adaptive immunity to engineer improved CRISPR-associated enzymes for gene
regulation and other biotechnological applications. The proposed work will systematically address these
challenges using interdisciplinary structural biology, biochemical, protein engineering, bioinformatic, and
genetic approaches in collaboration between the Hsu and Lyumkis labs. The combined results from the
proposed work will (1) provide mechanistic insight into the complete enzymatic cycle of Cas13d, (2) shed light
on the evolutionary pathways involved in Cas13d structure and function, (3) define the mechanism of CRISPR-
associated factors that can modulate Cas13 activity, and (4) enable the structure-guided engineering of next-
generation RNA-targeting effectors for therapeutic and diagnostic applications. Importantly, the principles and
approaches elucidated here will provide a blueprint for the design of diverse forthcoming tools beyond
CRISPR-Cas13 for a comprehensive genome engineering toolbox.
摘要
细菌生命利用不同的免疫机制来保护自己免受捕食性噬菌体的侵害,
被认为是他们的十倍CRISPR系统特别涉及其组成Cas
核酸酶与可编程的指导RNA靶向入侵核酸,赋予宿主细胞
适应性免疫它们可以分为六大类型,VI型Cas 13系统包含唯一的
已知的CRISPR核酸酶专门靶向RNA。CRISPR系统已被广泛应用,
基因工程技术,在过去的几年里,基于II型Cas9的平台
大大加快了基础研究和生物技术。就像Cas9用于DNA靶向一样,Cas 13酶
可以被改造成一个模块化的高效平台,用于细胞中的RNA靶向,
操作工具箱。然而,许多Cas 13酶受到可变和不可预测的活性的限制,
这一挑战限制了RNA干扰技术。更广泛地说,
基因组和转录组工程领域正在预测稳健的和可推广的切割效率,
在新开发的核酸酶效应物内,跨不同靶核酸和细胞类型的特异性。
最近,Hsu实验室报告发现了Cas 13的一个亚型,Cas 13 d系统,这是显著的。
比其他Cas 13亚型或短发夹RNA更小、更有效、更特异
选择性剪接的干扰和操纵。Lyumkis实验室最近利用了最先进的低温技术,
电子显微镜(cryo-EM)的进展,以解决与指导RNA结合的Cas 13 d的高分辨率结构
和靶RNA。然而,我们对Cas 13 d分子结构和功能的理解存在差距,
定义Cas 13 d活性的分子/结构生物学与在Cas 13 d中观察到的分子/结构生物学之间的脱节。
哺乳动物细胞在转录组工程的努力。首要目标是阐明
CRISPR-Cas适应性免疫机制工程化改进的CRISPR相关酶基因
法规和其他生物技术应用。拟议的工作将系统地解决这些问题,
挑战使用跨学科的结构生物学,生物化学,蛋白质工程,生物信息学,
Hsu和Lyumkis实验室合作的遗传方法。来自
拟议的工作将(1)提供对Cas 13 d的完整酶循环的机械见解,(2)阐明
Cas 13 d结构和功能的进化途径,(3)确定CRISPR的机制,
可以调节Cas 13活性的相关因子,和(4)使下一个-
用于治疗和诊断应用的RNA靶向效应物的产生。重要的是,原则和
这里阐述的方法将为未来各种工具的设计提供蓝图,
CRISPR-Cas 13是一个全面的基因组工程工具箱。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick Hsu其他文献
Patrick Hsu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick Hsu', 18)}}的其他基金
Mechanistic studies of RNA-targeting CRISPR systems
RNA靶向CRISPR系统的机制研究
- 批准号:
10256017 - 财政年份:2020
- 资助金额:
-- - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
-- - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
-- - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
-- - 项目类别: