Mixed graphical models for the prediction of neurological morbidity in the PICU

用于预测 PICU 神经发病率的混合图形模型

基本信息

  • 批准号:
    10437665
  • 负责人:
  • 金额:
    $ 18.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

In the modern pediatric intensive care unit (PICU), as mortality rates continue to decline, focus has shifted towards measures to decrease neurological morbidity. Neurological complications can be difficult to detect in the PICU as children oftentimes receive sedation and/or neuromuscular blockade due to the severity of their illnesses. Early identification and implementation of evidence-based treatment strategies is paramount to the reduction of neurological morbidity. Traditional methods of neuro-monitoring (computed tomography [CT], magnetic resonance imaging [MRI], electroencephalography [EEG]) cannot be practically utilized for routine screening purposes. We believe that biomathematical models integrating biomarkers and clinical data may represent an important tool for the detection of neurological complications in the PICU. This strategy may allow for rapid identification of neurologic complications and earlier intervention to ultimately reduce morbidity and mortality. In this mentored patient-oriented research career development award we will attempt to develop mixed graphical models using a novel algorithm developed by the co-sponsor, MGM-Learn (Mixed Graphical Model Learning), which has the unique capability of processing continuous and discrete variables. Two hundred and twenty-eight diagnostically diverse children admitted to the PICU at Children's Hospital of Pittsburgh of UPMC will be enrolled. Serum biomarkers (myelin basic protein [MBP], S100B, brain derived neurotrophic factor [BDNF], and glial fibrillary acidic protein [GFAP]) that have shown promise in prognostication of outcome after neurological injuries such as traumatic brain injury or cardiac arrest will be used in conjunction with clinical and laboratory variables obtained from the electronic health record, through integrative analysis in mixed graphical models to predict acute development of neurological complications that were not present at the time of admission (e.g. seizure, stroke, hemorrhage, encephalopathy) and morbidity (e.g. Functional Status Scale (FSS), Pediatric Quality of Life Inventory (PedsQL)) at discharge and 6 months following critical illness. This K23 award will provide me with in-depth training in mixed graphical modeling, greatly enhance my skills in the clinical application of neuro-biomarkers and effective leadership and management to transition to a successful independent investigator. It will provide preliminary data for my R01, the implementation of an early warning neuro-biosensor system, through the use of mixed graphical models that continually populates with the most up-to-date biomarker and clinical data variables, into clinical practice to detect neurological complications at a moment to moment basis; and the assessment of its ability to reduce neurologic morbidity through early recognition of neurological complications and timely execution of treatment strategies to prevent irreversible brain damage.
在现代儿科重症监护病房(PICU)中,随着死亡率持续下降,重点已转向降低神经系统发病率的措施。神经系统并发症在PICU中很难检测,因为儿童由于疾病的严重性而经常接受镇静和/或神经肌肉阻滞。早期识别和实施循证治疗策略对降低神经系统疾病发病率至关重要。传统的神经监测方法(计算机断层扫描[CT]、磁共振成像[MRI]、脑电图[EEG])实际上不能用于常规筛查目的。我们相信,整合生物标志物和临床数据的生物数学模型可能是检测PICU神经系统并发症的重要工具。这种策略可以快速识别神经系统并发症和早期干预,最终降低发病率和死亡率。在这个指导性的以患者为导向的研究职业发展奖中,我们将尝试使用共同赞助商MGM-Learn(混合图形模型学习)开发的新算法开发混合图形模型,该算法具有处理连续和离散变量的独特能力。将纳入228名在UPMC匹兹堡儿童医院PICU住院的诊断不同的儿童。血清生物标志物(髓鞘碱性蛋白[MBP]、S100 B、脑源性神经营养因子[BDNF]和胶质细胞酸性蛋白[GFAP])将与从电子健康记录获得的临床和实验室变量结合使用,通过混合图形模型中的综合分析,预测入院时不存在的神经系统并发症的急性发展(如癫痫、卒中、出血、脑病)和发病率(例如功能状态量表(FSS)、儿科生活质量量表(PedsQL))。这个K23奖项将为我提供混合图形建模方面的深入培训,大大提高我在神经生物标志物临床应用方面的技能,以及有效的领导和管理,以过渡到一个成功的独立研究者。它将为我的R 01提供初步数据,早期预警神经生物传感器系统的实施,通过使用不断填充最新生物标志物和临床数据变量的混合图形模型,进入临床实践,以随时检测神经系统并发症;以及通过早期识别神经系统并发症和及时执行治疗策略以防止不可逆脑损伤来评估其降低神经系统发病率的能力。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Maximum Pao2 in the First 72 Hours of Intensive Care Is Associated With Risk-Adjusted Mortality in Pediatric Patients Undergoing Mechanical Ventilation.
重症监护前 72 小时内的最大 Pao2 与接受机械通气的儿科患者的风险调整死亡率相关。
  • DOI:
    10.1097/cce.0000000000000186
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pelletier,JonathanH;Ramgopal,Sriram;Au,AliciaK;Clark,RobertSB;Horvat,ChristopherM
  • 通讯作者:
    Horvat,ChristopherM
Early Hyperoxemia and Outcome Among Critically Ill Children.
危重儿童的早期高氧血症和结果。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alicia K Au其他文献

Alicia K Au的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alicia K Au', 18)}}的其他基金

Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
  • 批准号:
    10676895
  • 财政年份:
    2021
  • 资助金额:
    $ 18.98万
  • 项目类别:
Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
  • 批准号:
    10456945
  • 财政年份:
    2021
  • 资助金额:
    $ 18.98万
  • 项目类别:
Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
  • 批准号:
    10313294
  • 财政年份:
    2021
  • 资助金额:
    $ 18.98万
  • 项目类别:
Mixed graphical models for the prediction of neurological morbidity in the PICU
用于预测 PICU 神经发病率的混合图形模型
  • 批准号:
    10178124
  • 财政年份:
    2018
  • 资助金额:
    $ 18.98万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 18.98万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.98万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 18.98万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.98万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 18.98万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.98万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 18.98万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 18.98万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 18.98万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.98万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了