Integrating Multiple Omics to Illuminate Gene Networks Underlying Cigarette Smoking and Opioids.

整合多个组学来阐明吸烟和阿片类药物背后的基因网络。

基本信息

  • 批准号:
    10439854
  • 负责人:
  • 金额:
    $ 57.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-30 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT The goal of the proposed research is to discover neurobiologically interpretable gene networks for addiction, specifically for cigarettes and opioids. To achieve this goal, we will apply a new multi-omics, multi-method framework—Gene Network Identification and Integration (GNetII)—to identify gene networks associated uniquely with cigarette or opioid outcomes and networks shared across these addictions. GNetII includes genome-wide epistasis, Explainable Artificial Intelligence, gene network construction, and Lines-of-Evidence methods. These cornerstone methods will enable integration of large-scale genome-wide association study (GWAS) data in living subjects, postmortem human brain data (RNA-sequencing, DNA methylation, chromatin immunoprecipitation sequencing, and variant genotypes) from addiction case and control decedents (deceased individuals), and public omics data. Cigarette smoking and opioid outcomes are genetically correlated, and we have parallel GWAS and multi-omics brain data available in two highly relevant tissues, dorsolateral prefrontal cortex and nucleus accumbens, for both of these addictions. Cigarettes and opioids are leading causes of preventable morbidity and mortality in the United States. These addictions affect millions of U.S. adults and youths and are highly heritable (e.g., 54% and 71% for opioid addiction and nicotine dependence, respectively). GWAS analyses have identified 300+ loci at genome-wide significance for smoking. GWAS for opioids are farther behind in sample size, but genome-wide significant loci are emerging. Neurobiological effects of known loci are largely unknown, and more loci and connections among the loci are still to be discovered. We hypothesize that applying new big data science methods to large-scale GWAS and gene regulation data in brain tissue will reveal previously undetected relationships (such as epistatic interactions between genes) and add knowledge of the neurobiology underlying addiction. We propose the following specific aims: Aim 1: Integrate multi-omics data to discover cigarette-associated gene networks. Aim 2: Integrate multi-omics data to discover opioid-associated gene networks. Aim 3: Integrate multi-omics data to find general addiction-associated gene networks. For cigarettes, Aims 1 and 3 will leverage GWAS (N=528,259) and multi-omics data in postmortem human brain from active smoker and nonsmoker decedents (N=262). For opioids, Aims 2 and 3 will use GWAS (N=49,178) and multi-omics brain data from opioid overdose case and control decedents (N=147). Analyses will be performed on Summit, the world's fastest supercomputer, which will greatly improve the likelihood of neurobiologically meaningful discoveries. Our study will capture complex networks across the genome to find previously unknown genes, as well as help explain the neurobiological underpinnings for the growing number of genetic loci associated with cigarette or opioid outcomes.
项目总结/摘要 这项研究的目标是发现神经生物学上可解释的成瘾基因网络, 特别是香烟和阿片类药物为了实现这一目标,我们将应用一种新的多组学、多方法 框架-基因网络识别和整合(GNetII)-识别相关的基因网络 独特的香烟或阿片类药物的结果和网络共享这些成瘾。GNetII包括 全基因组上位性、可解释人工智能、基因网络构建和证据线 方法.这些基础方法将使大规模全基因组关联研究的整合成为可能 (GWAS)数据,死后人脑数据(RNA测序,DNA甲基化, 染色质免疫沉淀测序和变异基因型) 死者(已故的个人)和公共组学数据。吸烟和阿片类药物的结果是 基因相关,我们有两个高度相关的平行GWAS和多组学大脑数据 背外侧前额叶皮层和背外侧前额叶核,这两种成瘾。 在美国,香烟和阿片类药物是可预防的发病率和死亡率的主要原因。这些 成瘾影响数百万美国成年人和青少年并且是高度遗传的(例如,阿片类药物为54%和71% 成瘾和尼古丁依赖)。GWAS分析已经在全基因组范围内确定了300多个位点, 吸烟的意义。阿片类药物的GWAS在样本量上远远落后,但全基因组显著 正在出现。已知基因座的神经生物学效应在很大程度上是未知的,更多的基因座和连接 仍有待发现。我们假设,应用新的大数据科学方法, 脑组织中大规模的GWAS和基因调控数据将揭示以前未发现的关系 (such作为基因间的上位相互作用),并增加了成瘾背后的神经生物学知识。 我们提出以下具体目标: 目的1:整合多组学数据,发现与癌症相关的基因网络。 目的2:整合多组学数据,发现阿片相关基因网络。 目的3:整合多组学数据,寻找一般成瘾相关基因网络。 对于香烟,目标1和3将利用GWAS(N= 528,259)和多组学数据在死后人体中进行研究。 来自活跃吸烟者和非吸烟者死亡者的脑(N=262)。对于阿片类药物,目标2和3将使用GWAS (N= 49,178)和来自阿片类药物过量病例和对照死亡者(N=147)的多组学脑数据。分析 将在世界上最快的超级计算机Summit上执行,这将大大提高 神经生物学意义的发现我们的研究将捕捉整个基因组的复杂网络, 以前未知的基因,以及帮助解释神经生物学基础的越来越多的 与香烟或阿片类药物相关的基因位点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dana B Hancock其他文献

Dana B Hancock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dana B Hancock', 18)}}的其他基金

Integrating Multiple Omics to Illuminate Gene Networks Underlying Cigarette Smoking and Opioids.
整合多个组学来阐明吸烟和阿片类药物背后的基因网络。
  • 批准号:
    10267762
  • 财政年份:
    2020
  • 资助金额:
    $ 57.7万
  • 项目类别:
Integrating Multiple Omics to Illuminate Gene Networks Underlying Cigarette Smoking and Opioids.
整合多个组学来阐明吸烟和阿片类药物背后的基因网络。
  • 批准号:
    10056112
  • 财政年份:
    2020
  • 资助金额:
    $ 57.7万
  • 项目类别:
Integrating Multiple Omics to Illuminate Gene Networks Underlying Cigarette Smoking and Opioids.
整合多个组学来阐明吸烟和阿片类药物背后的基因网络。
  • 批准号:
    10653156
  • 财政年份:
    2020
  • 资助金额:
    $ 57.7万
  • 项目类别:
Utilizing Interaction to Identify Novel Genetic Factors for Nicotine Dependence
利用相互作用来识别尼古丁依赖的新遗传因素
  • 批准号:
    8990623
  • 财政年份:
    2013
  • 资助金额:
    $ 57.7万
  • 项目类别:
Utilizing Interaction to Identify Novel Genetic Factors for Nicotine Dependence
利用相互作用来识别尼古丁依赖的新遗传因素
  • 批准号:
    8558757
  • 财政年份:
    2013
  • 资助金额:
    $ 57.7万
  • 项目类别:
Genetic and Environmental Modifiers of Parkinson Disease
帕金森病的遗传和环境调节剂
  • 批准号:
    7156673
  • 财政年份:
    2006
  • 资助金额:
    $ 57.7万
  • 项目类别:
Genetic and Environmental Modifiers of Parkinson Disease
帕金森病的遗传和环境调节剂
  • 批准号:
    7278177
  • 财政年份:
    2006
  • 资助金额:
    $ 57.7万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 57.7万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 57.7万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.7万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.7万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.7万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 57.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 57.7万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 57.7万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 57.7万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 57.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了