Methods Core
方法核心
基本信息
- 批准号:10441872
- 负责人:
- 金额:$ 156.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-22 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AreaBig DataCaringCommunicationCommunitiesConsultationsCriminal JusticeDataData AnalysesData AnalyticsData LinkagesData SetDiffusionEducational InterventionEffectivenessEffectiveness of InterventionsElectronic Health RecordEthicsGeneral PopulationGood Clinical PracticeHealthHealth ServicesHealth systemHealthcareHybridsIncubatedIndividualInformation SystemsInterceptInterventionJailJusticeManaged CareMeasuresMental HealthMethodologyMethodsModelingOutcomePersonsPilot ProjectsPolicePoliciesPopulationPositioning AttributePreventionPrevention ResearchPrevention approachProcessProductivityPublic HealthReproducibilityResearchResearch DesignResearch MethodologyResearch PersonnelResearch Project GrantsResourcesRiskSafetyServicesStreamSuicideSuicide preventionSystemTarget PopulationsTimeTrainingTranslationsWomanWorkbehavioral healthbiomedical informaticscost effectivenesscost-effectiveness evaluationdata integrationdesigneconomic evaluationeffectiveness implementation studyeffectiveness testingethnic diversityevidence baseexperiencehealth care service utilizationhealth economicshealth equityhigh riskimplementation scienceinnovationmennovelnovel strategiespreventive interventionracial and ethnicresponsesocial metricsstakeholder perspectivesstandard caresuicidal risksuicide modelsystems researchtranslational pipelineuptake
项目摘要
The Methods Core supports a Signature Project, 3 Exploratory Projects, and 4-6 Pilot Feasibility Projects
focused on health-justice big data linkage to enable effective and scalable suicide prevention approaches at
justice intercepts (i.e., places behavioral health services can intercept a justice trajectory to change behavioral
health outcomes). This Core provides resources to support rigorous, reproducible research that shares similar
conceptual frameworks, methods, and measures. Center Methods are innovative in that they:
1. Establish a suicide prevention effectiveness evidence base for our large, high-risk target population.
2. Create an n~110,000 combined Center dataset that will be diverse and will be an asset to the field.
3. Develop, manualize, and refine strategies for scalability, sustainability, and large-scale translation, to
move the field forward for these important but understudied areas of implementation science.
4. Use contact with the justice system (e.g., police contact, arrest), as a novel indicator of suicide risk in the
general population (i.e., a “novel data type”) to identify at-risk individuals not well-connected with care
5. Demonstrate how health and justice system big data linkage is achieved and can be used to automate
and conduct suicide risk identification and response across health and justice systems at scale.
6. Leverage the Mental Health Research Network’s (MHRN’s) methods for extracting suicide-related and
healthcare utilization outcomes from claims and electronic health record (EHR) data.
7. Use sociometric identification of policy entrepreneurs to promote diffusion of Center approaches (Aim 4)
8. Partner with managed care organizations for suicide risk identification and prevention at justice intercepts
9. Convene health, justice, and suicide prevention communities, constituencies who do not often work
together, to create novel solutions to a common problem.
The Methods Core supports the Center through the following Specific Aims:
1. Engage Consortium Partners, promoting utility, uptake, scalability, & sustainability of Center findings
2. Incubate and generate innovative approaches to suicide prevention
3. Facilitate design and conduct of Center research projects, including transforming Center projects into
Hybrid effectiveness-implementation studies to promote scalability and sustainability of interventions
4. Disseminate Center methods and solutions and build national capacity for justice, health, and suicide
prevention cross-system research
5. Evaluate the Center’s processes, progress, productivity and impact
The Center is designed to shorten the translational pipeline through scalable solutions, hybrid trials, strong
stakeholder integration, and a strong dissemination plan. Strong integration of Methods Core Work Streams
and stakeholder perspectives will advance Center public health impact.
方法核心支持一个签名项目,3个探索性项目和4-6个试点可行性项目
专注于健康-司法大数据联系,以实现有效和可扩展的自杀预防方法,
正义拦截(即,地方行为健康服务可以拦截一个正义的轨迹,以改变行为
健康成果)。该核心提供资源来支持具有相似性的严谨、可重复的研究
概念框架、方法和措施。中心方法的创新之处在于:
1.为我们庞大的高风险目标人群建立自杀预防有效性证据库。
2.创建一个n~ 110,000的组合中心数据集,该数据集将是多样化的,并将成为该领域的资产。
3.制定、手册化和完善可扩展性、可持续性和大规模翻译战略,
推动这些重要但研究不足的实施科学领域的发展。
4.利用与司法系统的联系(例如,警察接触,逮捕),作为自杀风险的新指标,
一般人群(即,一种“新的数据类型”),以确定与护理没有良好联系的高危个体
5.演示如何实现卫生和司法系统大数据链接,并可用于自动化
并在整个卫生和司法系统大规模开展自杀风险识别和应对工作。
6.利用心理健康研究网络(MHRN)的方法提取自杀相关的,
医疗保健利用结果来自索赔和电子健康记录(EHR)数据。
7.利用社会计量学方法识别政策企业家,促进中心方法的推广(目标4)
8.与管理式护理组织合作,在司法拦截中识别和预防自杀风险
9.召集健康,司法和自杀预防社区,不经常工作的选区
一起为共同的问题创造新的解决方案。
方法核心通过以下具体目标支持中心:
1.吸引联盟合作伙伴,促进中心发现的实用性、吸收性、可扩展性和可持续性
2.培育和产生预防自杀的创新方法
3.促进中心研究项目的设计和实施,包括将中心项目转化为
混合有效性-执行研究,以促进干预措施的可扩展性和可持续性
4.传播中心的方法和解决方案,并建立司法,健康和自杀的国家能力
预防跨系统研究
5.评估中心的流程、进度、生产力和影响力
该中心旨在通过可扩展的解决方案,混合试验,强大的
利益相关者的参与,以及强有力的传播计划。核心工作流程与方法的高度整合
和利益相关者的观点将推进中心的公共卫生影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JENNIFER E JOHNSON其他文献
JENNIFER E JOHNSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JENNIFER E JOHNSON', 18)}}的其他基金
Maternal Health Multilevel Intervention/s for Racial Equity (MIRACLE) Center
孕产妇保健种族平等多层次干预 (MIRACLE) 中心
- 批准号:
10755548 - 财政年份:2023
- 资助金额:
$ 156.35万 - 项目类别:
The ROSE Scale-Up Study: Informing a decision about ROSE as universal postpartum depression prevention
ROSE 扩大研究:为有关 ROSE 作为通用产后抑郁症预防的决定提供信息
- 批准号:
10679085 - 财政年份:2022
- 资助金额:
$ 156.35万 - 项目类别:
The ROSE Scale-Up Study: Informing a decision about ROSE as universal postpartum depression prevention
ROSE 扩大研究:为有关 ROSE 作为通用产后抑郁症预防的决定提供信息
- 批准号:
10523220 - 财政年份:2022
- 资助金额:
$ 156.35万 - 项目类别:
Meeting women where they are: Multilevel intervention addressing racial disparities in maternal morbidity and mortality
与妇女会面:多层次干预解决孕产妇发病率和死亡率方面的种族差异
- 批准号:
10173318 - 财政年份:2020
- 资助金额:
$ 156.35万 - 项目类别:
Meeting women where they are: Multilevel intervention addressing racial disparities in maternal morbidity and mortality
与妇女会面:多层次干预解决孕产妇发病率和死亡率方面的种族差异
- 批准号:
10398257 - 财政年份:2020
- 资助金额:
$ 156.35万 - 项目类别:
Meeting women where they are: Multilevel intervention addressing racial disparities in maternal morbidity and mortality - Administrative Supplement
与妇女会面:多层次干预解决孕产妇发病率和死亡率方面的种族差异 - 行政补充
- 批准号:
10330748 - 财政年份:2020
- 资助金额:
$ 156.35万 - 项目类别:
IPT for major depression following perinatal loss
IPT 治疗围产期流产后重度抑郁症
- 批准号:
10665702 - 财政年份:2020
- 资助金额:
$ 156.35万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 156.35万 - 项目类别:
Standard Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
- 批准号:
MR/Y034422/1 - 财政年份:2024
- 资助金额:
$ 156.35万 - 项目类别:
Research Grant
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
- 批准号:
24K21025 - 财政年份:2024
- 资助金额:
$ 156.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
- 批准号:
DP240100300 - 财政年份:2024
- 资助金额:
$ 156.35万 - 项目类别:
Discovery Projects
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
- 批准号:
2346286 - 财政年份:2024
- 资助金额:
$ 156.35万 - 项目类别:
Standard Grant
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
- 批准号:
2348755 - 财政年份:2024
- 资助金额:
$ 156.35万 - 项目类别:
Standard Grant
Market Orientation, Big Data Analysis Capability, and Business Performance: The Moderating Role of Supplier Relationship, Big data Analysis Outscoring
市场导向、大数据分析能力与经营绩效:供应商关系的调节作用、大数据分析得分
- 批准号:
24K05127 - 财政年份:2024
- 资助金额:
$ 156.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generative Visual Pre-training on Unlabelled Big Data
未标记大数据的生成视觉预训练
- 批准号:
DP240101848 - 财政年份:2024
- 资助金额:
$ 156.35万 - 项目类别:
Discovery Projects
MEGASKILLS [MEthodology of Psycho-pedagogical, Big Data and Commercial Video GAmes procedures for the European SKILLS Agenda Implementation]
MEGASKILLS [欧洲技能议程实施的心理教育学、大数据和商业视频游戏程序的方法]
- 批准号:
10069843 - 财政年份:2023
- 资助金额:
$ 156.35万 - 项目类别:
EU-Funded
Improving NHS perimenopausal diagnosis and HRT prescription through AI, machine learning and big data
通过人工智能、机器学习和大数据改善 NHS 围绝经期诊断和 HRT 处方
- 批准号:
10053966 - 财政年份:2023
- 资助金额:
$ 156.35万 - 项目类别:
Collaborative R&D