Morphogenesis: Biophysics and Genetics of Dorsal Closure
形态发生:背侧闭合的生物物理学和遗传学
基本信息
- 批准号:10441492
- 负责人:
- 金额:$ 43.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:4D ImagingAddressAdhesionsAnimalsArchitectureBiologicalBiological ModelsBiological ProcessBiophysicsCell ShapeCellsCellular biologyCharacteristicsCleft PalateComplexDefectDevelopmentDorsalDrosophila genusDrosophila melanogasterEmbryoEpithelialFeedbackFive-Year PlansGenesGeneticGenetic ScreeningGenomeHeartHuman PathologyImageInstructionIonsLateralLesionLifeModelingMolecularMorphogenesisNeural tubePalatePatternPhylogenyPlayPositioning AttributeProcessProductionRegulationResolutionRoleShapesSignal TransductionSpinal DysraphismThermodynamicsTissuesWorkbiophysical techniquescell motilitydesignflygastrulationgene discoverygene productgenetic approachinsightkinematicsmutantphysical insultresiliencestomach cardiawoundwound healing
项目摘要
Cell sheet morphogenesis plays crucial roles in developmental milestones during vertebrate morphogenesis,
including gastrulation and the formation of the neural tube, the heart, and the palate. It is also essential for
wound healing. Coordination of the cellular machineries and the signaling cascades that drive and regulate
morphogenesis is critical – misregulation results in developmental and wound healing defects that can be fatal.
We focus on the fundamental biology of how cell sheet morphogenesis is powered, regulated and coordinated
during dorsal closure in Drosophila melanogaster. Conservation of molecular, cellular and tissue archictecture
make closure an ideal model system for interrogating the molecular basis of morphogenesis.
During closure, lateral epidermal sheets advance to close a dorsal opening. Closure is amenable to a wide variety
of diverse experimental approaches and we pioneered the study of closure as a model system, especially through
the use of live imaging strategies. We identified four processes that contribute to closure and demonstrated that
no single force that contributes is absolutely required. Thus, closure is robust, resilient and redundant using
molecular components that are conserved across metazoan phylogeny. Our recent work focuses on how ion fluxes
contribute to closure and proposes a thermodynamic model to understand tissue remodeling during closure. We
address how signals from patterning and polarity gene products converge to regulate cell shape and the changes
in cell shape that characterize morphogenesis. We initiated a forward genetic screen that directly assesses the
kinematics of closure and investigates the genetic basis for closure's robustness and resilience. More than 140
genes were previously known to contribute to DC and we have already discovered 23 additional genetic intervals
that are required for closure in a pilot screen of just ¹/? of the fly genome. During the next five years we plan to
use gene discovery to identify new genes that are required for closure. We will use high-resolution 4D imaging
to document quantitatively the cellular shape changes that characterize closure in wild type and mutant animals,
then use biophysical strategies to determine how these new genes contribute to force production and regulation
of closure. Key conceptual gaps we plan to address are what roles embryonic patterning plays in establishing the
cellular and subcellular architectures that characterizes the embryo at the onset of closure and how ion fluxes
contribute to closure. We will investigate the signal (or signals) that triggers the onset of closure and feedback
mechanisms that compensate for genetic or physical insults to the progress of closure. We will continue to
explore how force-generating cytoskeletal components are positioned, coordinated and regulated and study how
adhesion complexes both transmit forces and allow cell movements.
We are uniquely poised to address key extant questions that characterize the basic biology of cell sheet
morphogenesis in flies. Because morphogenesis is highly conserved at the molecular, cellular and tissue levels,
our work directly informs vertebrate morphogenesis in development and wound healing.
在脊椎动物形态发生过程中,细胞片的形态发生在发育里程碑中起着至关重要的作用。
包括原肠形成和神经管、心脏和上颚的形成。它也是对
伤口愈合。细胞机制和驱动和调节的信号级联的协调
形态发生是关键--调控不当会导致发育和伤口愈合缺陷,这可能是致命的。
我们专注于细胞片形态发生是如何被驱动、调节和协调的基本生物学
在果蝇的背部闭合过程中。分子、细胞和组织结构的保守性
使闭合成为询问形态发生的分子基础的理想模型系统。
在闭合过程中,外侧表皮片向前推进以闭合背部开口。关闭是多种多样的。
不同的实验方法,我们率先将闭包作为一个模型系统进行研究,特别是通过
实时成像策略的使用。我们确定了四个有助于关闭的流程,并演示了
没有任何一种力量是绝对必要的。因此,闭包是健壮的、有弹性的和冗余的
在后生动物系统发育过程中保守的分子成分。我们最近的工作集中在离子通量是如何
有助于闭合,并提出了一个热力学模型来理解闭合过程中的组织重塑。我们
阐述来自图案化和极性基因产物的信号如何聚合以调节细胞形状和变化
以形态发生为特征的细胞形状。我们启动了一项正向基因筛查,直接评估
闭合的运动学,并研究闭合的健壮性和弹性的遗传基础。140多个
以前已知的基因对DC有贡献,我们已经发现了另外23个遗传间隔
在Just?/的引导屏幕中关闭所需的?苍蝇基因组的。在未来五年内,我们计划
使用基因发现来识别关闭所需的新基因。我们将使用高分辨率的4D成像
为了定量记录表征野生型和突变型动物闭合的细胞形状变化,
然后使用生物物理策略来确定这些新基因如何对强制生产和调节做出贡献。
关门大吉。我们计划解决的关键概念差距是胚胎模式在建立
胚胎闭合初期的细胞和亚细胞构筑以及离子如何流动
有助于结案。我们将调查触发关闭和反馈开始的一个或多个信号
补偿遗传或身体上对闭合进程的侮辱的机制。我们将继续
探索产生力量的细胞骨架组件如何定位、协调和调节,并研究如何
黏附复合体既传递力量,又允许细胞移动。
我们独一无二地准备解决现有的关键问题,这些问题表征了细胞片的基本生物学
苍蝇的形态发生。由于形态发生在分子、细胞和组织水平上高度保守,
我们的工作直接告知脊椎动物在发育和伤口愈合过程中的形态发生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL PETER KIEHART其他文献
DANIEL PETER KIEHART的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL PETER KIEHART', 18)}}的其他基金
Morphogenesis: Biophysics and Genetics of Dorsal Closure
形态发生:背侧闭合的生物物理学和遗传学
- 批准号:
10200838 - 财政年份:2018
- 资助金额:
$ 43.57万 - 项目类别:
Morphogenesis: Biophysics and Genetics of Dorsal Closure
形态发生:背侧闭合的生物物理学和遗传学
- 批准号:
10623612 - 财政年份:2018
- 资助金额:
$ 43.57万 - 项目类别:
Design and Implementation of Genetically Encoded Myosin Based Force Sensors
基于基因编码肌球蛋白的力传感器的设计与实现
- 批准号:
8446280 - 财政年份:2012
- 资助金额:
$ 43.57万 - 项目类别:
Design and Implementation of Genetically Encoded Myosin Based Force Sensors
基于基因编码肌球蛋白的力传感器的设计与实现
- 批准号:
8320666 - 财政年份:2012
- 资助金额:
$ 43.57万 - 项目类别:
Morphogenesis: Biophysics and Genetics of Dorsal Closure
形态发生:背侧闭合的生物物理学和遗传学
- 批准号:
7923503 - 财政年份:2009
- 资助金额:
$ 43.57万 - 项目类别:
Myosins VIIA, VIIB & XV in Fly Hearing and Morphogenesis
肌球蛋白VIIA、VIIB
- 批准号:
7252027 - 财政年份:2005
- 资助金额:
$ 43.57万 - 项目类别:
Myosins VIIA, VIIB & XV in Fly Hearing and Morphogenesis
肌球蛋白VIIA、VIIB
- 批准号:
6964907 - 财政年份:2005
- 资助金额:
$ 43.57万 - 项目类别:
Myosins VIIA, VIIB & XV in Fly Hearing and Morphogenesis
肌球蛋白VIIA、VIIB
- 批准号:
7640647 - 财政年份:2005
- 资助金额:
$ 43.57万 - 项目类别:
Myosins VIIA, VIIB & XV in Fly Hearing and Morphogenesis
肌球蛋白VIIA、VIIB
- 批准号:
7456402 - 财政年份:2005
- 资助金额:
$ 43.57万 - 项目类别:
Myosins VIIA, VIIB & XV in Fly Hearing and Morphogenesis
肌球蛋白VIIA、VIIB
- 批准号:
7094070 - 财政年份:2005
- 资助金额:
$ 43.57万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 43.57万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 43.57万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 43.57万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 43.57万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 43.57万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 43.57万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 43.57万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 43.57万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 43.57万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 43.57万 - 项目类别:
Research Grant














{{item.name}}会员




