Simulating Workforce Design Teams in Biomedical Engineering Education
模拟生物医学工程教育中的劳动力设计团队
基本信息
- 批准号:10440419
- 负责人:
- 金额:$ 2.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingBachelor&aposs DegreeBiomedical EngineeringBusinessesCareer ChoiceClinicalCompetenceComputer-Aided DesignDelawareDevelopmentDevice or Instrument DevelopmentDevicesDimensionsDissectionEducationEducational CurriculumEngineeringEthicsFocus GroupsFutureGoalsGrowthImmersionIndustryInstructionInterventionInterviewKnowledgeLearningLearning ModuleMapsMeasuresMedical DeviceMedical Device DesignsMedical TechnologyMethodsModelingNeeds AssessmentOccupationsOutcomePerformancePerformance at workPhasePopulationProcessRecordsRegulatory AffairsRegulatory PathwayRoleSpecialistSpecific qualifier valueStudentsSurveysSystems DevelopmentTechnical ExpertiseTechnologyTimeTrainingTranslatingUnderrepresented PopulationsUnited StatesUniversitiesVoiceWomanWorkWorkplacebasebroadening participation researchcareerclinical research sitecollegecomputer generateddesignengineering designexperienceinnovationmennew product developmentnovelprogramsscale upskillsstakeholder perspectivesstatisticssuccessundergraduate student
项目摘要
PROJECT SUMMARY
Engineering education must prepare trainees to meet the nation's workforce demands. Biomedical engineering
students require early, practical experience to develop the technical skills, knowledge of regulatory pathways,
and training in teamwork necessary to solve future unmet clinical needs. The undergraduate biomedical
engineering capstone design course is often used as a “catchall” to develop these critical professional skills;
however, in order to build competency, it is recommended that these skills be practiced throughout the
curriculum, not just at the end. Our goal is to develop a core, sophomore-level, medical devices course in
which students simulate the engineering teams found in industry in order to build workplace-ready skills. To
accomplish this goal, we will implement innovative instructional methods. Sophomore-level students will work
in teams, each with a defined engineering role. Teams will work through three medical device modules, and
each module will consist of four main phases: needs identification, design requirements, regulatory, and ethics.
Student teams will 1) evaluate how the engineering design process applies to the development of medical
devices, with an emphasis on defining the unmet need, developing design requirements, and applying the
voice of the customer; 2) create dimensioned models of medical devices by using computer-aided design; and
3) explain U.S. regulatory approval requirements to market different FDA classes of medical devices. We will
leverage existing partnerships between the University of Delaware Biomedical Engineering Department and
several local clinical sites to develop short videos of stakeholder perspectives of existing medical technologies,
which will allow us to scale up some of the benefits of traditional clinical immersion courses and bring the voice
of the customer to the students. Students will perform “device dissections” to take apart existing technology
and learn how the medical devices work, benefiting from a hands-on experience that develops their
engineering professional identities. Students will measure medical device components and recreate
engineering drawings, building industry-valued computer-aided design skills. Embedded throughout the
semester are professional proficiency lessons on high-performance teamwork and project management.
Through this process, students will evaluate the broader context of medical devices, including regulatory,
business, and ethical considerations. Overall, these approaches allow for explicit training in teamwork prior to
capstone, scalable instructional methods, and early introduction to medical device design. Combined, we
expect students to have increased biomedical engineering professional identity, industry-relevant skills,
teamwork abilities, and identification of medical device career opportunities, leading to enhanced retention and
representation in the biomedical engineering workforce.
项目概要
工程教育必须培养学员以满足国家劳动力需求。生物医学工程
学生需要早期的实践经验来培养技术技能、监管途径知识,
以及解决未来未满足的临床需求所需的团队合作培训。生物医学本科生
工程顶点设计课程通常被用作培养这些关键专业技能的“包罗万象”;
然而,为了培养能力,建议在整个过程中练习这些技能
课程,而不仅仅是最后。我们的目标是开发一门核心的、大二水平的医疗设备课程
学生模拟行业中的工程团队,以培养适合工作场所的技能。到
为了实现这一目标,我们将实施创新的教学方法。大二学生将参加工作
在团队中,每个团队都有明确的工程角色。团队将通过三个医疗设备模块进行工作,以及
每个模块将由四个主要阶段组成:需求识别、设计要求、监管和道德。
学生团队将 1) 评估工程设计过程如何应用于医疗开发
设备,重点是定义未满足的需求,开发设计要求,并应用
客户的声音; 2)利用计算机辅助设计创建医疗器械的尺寸模型;和
3) 解释美国监管机构批准销售不同 FDA 类别医疗器械的要求。我们将
利用特拉华大学生物医学工程系和
几个当地的临床站点开发了利益相关者对现有医疗技术的看法的短视频,
这将使我们能够扩大传统临床浸入式课程的一些好处,并带来声音
从客户到学生。学生将进行“设备解剖”以拆解现有技术
并了解医疗设备的工作原理,从实践经验中受益,从而培养他们的能力
工程专业身份。学生将测量医疗设备组件并重新创建
工程图纸,构建行业重视的计算机辅助设计技能。嵌入整个
本学期是关于高绩效团队合作和项目管理的专业能力课程。
通过这个过程,学生将评估医疗器械的更广泛背景,包括监管、
商业和道德考虑。总体而言,这些方法允许在之前对团队合作进行明确的培训
顶点、可扩展的教学方法以及医疗设备设计的早期介绍。结合起来,我们
期望学生提高生物医学工程专业认同感、行业相关技能、
团队合作能力,以及识别医疗器械职业机会,从而提高保留率和
在生物医学工程队伍中的代表性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Ilkhanipour Rooney其他文献
Sarah Ilkhanipour Rooney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Ilkhanipour Rooney', 18)}}的其他基金
Simulating Workforce Design Teams in Biomedical Engineering Education
模拟生物医学工程教育中的劳动力设计团队
- 批准号:
10630345 - 财政年份:2021
- 资助金额:
$ 2.16万 - 项目类别:














{{item.name}}会员




