Simulating Workforce Design Teams in Biomedical Engineering Education
模拟生物医学工程教育中的劳动力设计团队
基本信息
- 批准号:10440419
- 负责人:
- 金额:$ 2.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingBachelor&aposs DegreeBiomedical EngineeringBusinessesCareer ChoiceClinicalCompetenceComputer-Aided DesignDelawareDevelopmentDevice or Instrument DevelopmentDevicesDimensionsDissectionEducationEducational CurriculumEngineeringEthicsFocus GroupsFutureGoalsGrowthImmersionIndustryInstructionInterventionInterviewKnowledgeLearningLearning ModuleMapsMeasuresMedical DeviceMedical Device DesignsMedical TechnologyMethodsModelingNeeds AssessmentOccupationsOutcomePerformancePerformance at workPhasePopulationProcessRecordsRegulatory AffairsRegulatory PathwayRoleSpecialistSpecific qualifier valueStudentsSurveysSystems DevelopmentTechnical ExpertiseTechnologyTimeTrainingTranslatingUnderrepresented PopulationsUnited StatesUniversitiesVoiceWomanWorkWorkplacebasebroadening participation researchcareerclinical research sitecollegecomputer generateddesignengineering designexperienceinnovationmennew product developmentnovelprogramsscale upskillsstakeholder perspectivesstatisticssuccessundergraduate student
项目摘要
PROJECT SUMMARY
Engineering education must prepare trainees to meet the nation's workforce demands. Biomedical engineering
students require early, practical experience to develop the technical skills, knowledge of regulatory pathways,
and training in teamwork necessary to solve future unmet clinical needs. The undergraduate biomedical
engineering capstone design course is often used as a “catchall” to develop these critical professional skills;
however, in order to build competency, it is recommended that these skills be practiced throughout the
curriculum, not just at the end. Our goal is to develop a core, sophomore-level, medical devices course in
which students simulate the engineering teams found in industry in order to build workplace-ready skills. To
accomplish this goal, we will implement innovative instructional methods. Sophomore-level students will work
in teams, each with a defined engineering role. Teams will work through three medical device modules, and
each module will consist of four main phases: needs identification, design requirements, regulatory, and ethics.
Student teams will 1) evaluate how the engineering design process applies to the development of medical
devices, with an emphasis on defining the unmet need, developing design requirements, and applying the
voice of the customer; 2) create dimensioned models of medical devices by using computer-aided design; and
3) explain U.S. regulatory approval requirements to market different FDA classes of medical devices. We will
leverage existing partnerships between the University of Delaware Biomedical Engineering Department and
several local clinical sites to develop short videos of stakeholder perspectives of existing medical technologies,
which will allow us to scale up some of the benefits of traditional clinical immersion courses and bring the voice
of the customer to the students. Students will perform “device dissections” to take apart existing technology
and learn how the medical devices work, benefiting from a hands-on experience that develops their
engineering professional identities. Students will measure medical device components and recreate
engineering drawings, building industry-valued computer-aided design skills. Embedded throughout the
semester are professional proficiency lessons on high-performance teamwork and project management.
Through this process, students will evaluate the broader context of medical devices, including regulatory,
business, and ethical considerations. Overall, these approaches allow for explicit training in teamwork prior to
capstone, scalable instructional methods, and early introduction to medical device design. Combined, we
expect students to have increased biomedical engineering professional identity, industry-relevant skills,
teamwork abilities, and identification of medical device career opportunities, leading to enhanced retention and
representation in the biomedical engineering workforce.
项目总结
工程教育必须为学员做好准备,以满足国家的劳动力需求。生物医学工程
学生需要早期的实践经验来发展技术技能,了解调控途径,
以及必要的团队合作培训,以解决未来未得到满足的临床需求。本科生生物医学
工程顶峰设计课程经常被用作培养这些关键专业技能的“总结性”;
但是,为了培养能力,建议在整个过程中练习这些技能
课程表,而不仅仅是结尾。我们的目标是开发一门核心的,二年级的,医疗器械课程
学生模拟工业中的工程团队,以建立工作场所准备的技能。至
为了实现这一目标,我们将实施创新的教学方法。二年级的学生将会工作
在团队中,每个团队都有明确的工程角色。团队将研究三个医疗设备模块,以及
每个模块将由四个主要阶段组成:需求确定、设计要求、法规和道德规范。
学生团队将评估工程设计过程如何应用于医学发展
设备,重点是定义未满足的需求,开发设计需求,并应用
客户的声音;2)使用计算机辅助设计创建医疗器械的尺寸模型;以及
3)解释美国监管批准要求,以营销不同类别的FDA医疗器械。我们会
利用特拉华大学生物医学工程系和
几个当地的临床网站,开发利益相关者对现有医疗技术的观点的短视频,
这将使我们能够扩大传统临床沉浸式课程的一些好处,并带来声音
向学生展示客户的价值。学生们将进行“设备解剖”来拆解现有技术
并了解医疗设备是如何工作的,受益于开发其
工程专业人士的身份。学生将测量医疗器械部件并重新制造
具有工程制图、建筑行业有价值的计算机辅助设计技能。嵌入到整个
学期是关于高绩效团队合作和项目管理的专业熟练课程。
通过这一过程,学生将评估医疗器械的更广泛背景,包括监管、
商业和道德方面的考虑。总体而言,这些方法允许在团队合作之前进行明确的培训
顶石,可扩展的教学方法,以及医疗器械设计的早期介绍。加在一起,我们
期望学生具有更高的生物医学工程专业认同感,与行业相关的技能,
团队合作能力,以及发现医疗器械的职业机会,从而增强留住和
在生物医学工程工作队伍中的代表。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Ilkhanipour Rooney其他文献
Sarah Ilkhanipour Rooney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Ilkhanipour Rooney', 18)}}的其他基金
Simulating Workforce Design Teams in Biomedical Engineering Education
模拟生物医学工程教育中的劳动力设计团队
- 批准号:
10630345 - 财政年份:2021
- 资助金额:
$ 2.16万 - 项目类别:














{{item.name}}会员




