Simulating Workforce Design Teams in Biomedical Engineering Education
模拟生物医学工程教育中的劳动力设计团队
基本信息
- 批准号:10630345
- 负责人:
- 金额:$ 2.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingBachelor&aposs DegreeBiomedical EngineeringBusinessesCareer ChoiceClassificationClinicalCompetenceComputer-Aided DesignDelawareDevelopmentDevice or Instrument DevelopmentDevicesDimensionsDissectionEducationEducational CurriculumEngineeringEthicsFocus GroupsFutureGoalsGrowthImmersionIndustryInstructionInterventionInterviewKnowledgeLearningLearning ModuleMapsMarketingMeasuresMedical DeviceMedical Device DesignsMedical TechnologyMethodsModelingNeeds AssessmentOccupationsOutcomePerformancePhasePopulationProcessRecommendationRecordsRegulatory AffairsRegulatory PathwayRoleSpecialistSpecific qualifier valueStudentsSurveysSystems DevelopmentTechnical ExpertiseTechnologyTimeTrainingTranslatingUnderrepresented PopulationsUnited StatesUniversitiesVoiceWomanWorkbroadening participation researchcareercareer preparationclinical research sitecollegecomputer generateddesignengineering designexperienceinnovationmennew product developmentnovelprofessional studentsprogramsscale upskillsstakeholder perspectivesstatisticssuccessundergraduate student
项目摘要
PROJECT SUMMARY
Engineering education must prepare trainees to meet the nation's workforce demands. Biomedical engineering
students require early, practical experience to develop the technical skills, knowledge of regulatory pathways,
and training in teamwork necessary to solve future unmet clinical needs. The undergraduate biomedical
engineering capstone design course is often used as a “catchall” to develop these critical professional skills;
however, in order to build competency, it is recommended that these skills be practiced throughout the
curriculum, not just at the end. Our goal is to develop a core, sophomore-level, medical devices course in
which students simulate the engineering teams found in industry in order to build workplace-ready skills. To
accomplish this goal, we will implement innovative instructional methods. Sophomore-level students will work
in teams, each with a defined engineering role. Teams will work through three medical device modules, and
each module will consist of four main phases: needs identification, design requirements, regulatory, and ethics.
Student teams will 1) evaluate how the engineering design process applies to the development of medical
devices, with an emphasis on defining the unmet need, developing design requirements, and applying the
voice of the customer; 2) create dimensioned models of medical devices by using computer-aided design; and
3) explain U.S. regulatory approval requirements to market different FDA classes of medical devices. We will
leverage existing partnerships between the University of Delaware Biomedical Engineering Department and
several local clinical sites to develop short videos of stakeholder perspectives of existing medical technologies,
which will allow us to scale up some of the benefits of traditional clinical immersion courses and bring the voice
of the customer to the students. Students will perform “device dissections” to take apart existing technology
and learn how the medical devices work, benefiting from a hands-on experience that develops their
engineering professional identities. Students will measure medical device components and recreate
engineering drawings, building industry-valued computer-aided design skills. Embedded throughout the
semester are professional proficiency lessons on high-performance teamwork and project management.
Through this process, students will evaluate the broader context of medical devices, including regulatory,
business, and ethical considerations. Overall, these approaches allow for explicit training in teamwork prior to
capstone, scalable instructional methods, and early introduction to medical device design. Combined, we
expect students to have increased biomedical engineering professional identity, industry-relevant skills,
teamwork abilities, and identification of medical device career opportunities, leading to enhanced retention and
representation in the biomedical engineering workforce.
项目摘要
工程教育必须培养学员,以满足国家的劳动力需求。生物医学工程
学生需要早期的实践经验来发展技术技能,监管途径的知识,
以及团队合作的培训,以解决未来未满足的临床需求。生物医学本科
工程顶点设计课程通常被用作“总括”,以发展这些关键的专业技能;
然而,为了培养能力,建议在整个过程中练习这些技能。
课程,而不仅仅是在最后。我们的目标是开发一个核心,讲师级,医疗器械课程,
学生模拟工业中的工程团队,以建立工作场所准备的技能。到
要实现这一目标,我们将实施创新的教学方法。二年级的学生将工作
每个团队都有一个明确的工程角色。团队将通过三个医疗设备模块进行工作,
每个模块将包括四个主要阶段:需求确定、设计要求、监管和道德操守。
学生团队将1)评估工程设计过程如何应用于医疗器械的开发,
设备,重点是定义未满足的需求,开发设计要求,并应用
客户的声音; 2)通过使用计算机辅助设计创建医疗器械的尺寸模型;以及
3)解释美国监管批准要求,以销售不同FDA类别的医疗器械。我们将
利用特拉华州大学生物医学工程系与
几个当地临床站点,以开发利益相关者对现有医疗技术的观点的短视频,
这将使我们能够扩大传统临床浸入式课程的一些好处,
客户对学生。学生们将进行“设备解剖”,
并了解医疗设备的工作原理,从实践经验中受益,
工程专业的身份。学生将测量医疗设备组件,
工程制图、建筑行业看重的计算机辅助设计技能。嵌入在整个
本学期是关于高绩效团队合作和项目管理专业课程。
通过这个过程,学生将评估医疗器械的更广泛的背景,包括监管,
商业和道德考虑。总的来说,这些方法允许在团队合作之前进行明确的培训,
顶点,可扩展的教学方法,以及医疗器械设计的早期介绍。结合起来,我们
希望学生有增加生物医学工程专业的身份,行业相关的技能,
团队合作能力,并确定医疗器械职业机会,从而提高保留率,
生物医学工程劳动力的代表性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Ilkhanipour Rooney其他文献
Sarah Ilkhanipour Rooney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Ilkhanipour Rooney', 18)}}的其他基金
Simulating Workforce Design Teams in Biomedical Engineering Education
模拟生物医学工程教育中的劳动力设计团队
- 批准号:
10440419 - 财政年份:2021
- 资助金额:
$ 2.16万 - 项目类别:














{{item.name}}会员




