Realizing the radiobiological impact of protons and high-LET particles in head and neck cancer and glioblastoma models
认识质子和高 LET 粒子对头颈癌和胶质母细胞瘤模型的放射生物学影响
基本信息
- 批准号:10441141
- 负责人:
- 金额:$ 32.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2023-01-01
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAutomobile DrivingBiologic CharacteristicBiologicalBiological ProcessBiologyBrainBrain NeoplasmsCell SurvivalCell modelCellsCharacteristicsChronicClinical OncologyComplexDNADNA DamageDNA Double Strand BreakDNA RepairDataDepositionDevelopmentDistalDose-RateDrug TargetingElectron TransportFrequenciesFutureGlioblastomaHead and Neck CancerHead and Neck NeoplasmsHeliumHigh-LET RadiationHumanHypoxiaIonsKnowledgeLeadLinear Energy TransferMalignant NeoplasmsMediatingModelingMolecularNormal CellNormal tissue morphologyOrganOxygenPatientsPharmaceutical PreparationsPhotonsProtonsRadiationRadiation Dose UnitRadiation PhysicsRadiation ToleranceRadiation therapyRadiobiologyRelative Biological EffectivenessResearchResistanceResourcesRiskRoleSamplingSolidSolid NeoplasmTechniquesTherapeuticTherapeutic EffectTimeTissuesTumor TissueUncertaintyX-Ray Medical Imagingcancer therapycell killingcellular targetingcombinatorialcomparativeeffective therapyimprovedinhibitorinterestirradiationneoplastic cellnoveloptimal treatmentsparticlepatient responseproton beamradiation effectradiation resistanceradioresistantresponsescreeningside effectthree-dimensional modelingtreatment strategytumortwo-dimensional
项目摘要
Project Summary
Radiotherapy is still one of the most effective cancer treatments used to treatment ~50 % of all human
cancers, and particularly solid tumours of the head and neck and brain. However, acute and long term
adverse side effects of radiotherapy are still common, and some tumours are also resistant to the
therapeutic effects of the radiation. The increased use of precision particle radiotherapy, particularly proton
beam therapy, enables the radiation dose to be delivered precisely to the tumour, which spares the
surrounding normal tissues of any unwanted radiation dose and is therefore able to limit some of the
adverse side effects. Furthermore, the ability to deliver radiation that causes extensive damage to the
tumour tissues (so called “high-LET”) is also a significant advantage in effective radiotherapy. However
despite this, there is still uncertainty regarding the biological effects of protons and high-LET radiation on
both normal and tumour cells and tissues, and how the radiotherapy can be optimised for patient benefit.
This proposal brings together world leading experts in radiation physics, biology and clinical oncology to
reveal new knowledge of the biological impact of protons and high-LET radiation versus conventional (x-
ray) radiotherapy, on cell models of head and neck and brain tumours. This will be performed on both 2-
dimensional, but also 3-dimensional cell models of the tumours which are more similar to those observed
in patients. We will thoroughly analyse the precise effect of protons and high-LET radiation at the molecular
(DNA) level, and how this correlates with the impact on overall survival of the cells. We will also investigate
the role of important factors such as low oxygen levels (hypoxia) which is important in driving resistance of
solid tumours of the head and neck and brain to radiotherapy, but also the rate at which the radiotherapy is
delivered (particularly high dose rates, so called “FLASH”), on the biology and survival of the tumour versus
the normal cells. Additionally, we will identify the combination of specific drugs and inhibitors under the
various conditions that are more effective in combination with protons and high-LET radiation in optimising
tumour cell killing, whilst sparing the associated normal cells.
In the long term, our research will contribute to the identification and development of more effective
strategies using radiotherapy, including proton beam therapy, for tumours of the head and neck and brain
that are particularly resistant to the radiation treatment. This will lead to an improvement in the patient
response but also in overall survival following precision particle radiotherapy.
1
项目概要
放射疗法仍然是最有效的癌症治疗方法之一,用于治疗约 50% 的人类癌症
癌症,特别是头颈和脑部的实体瘤。然而,急性和长期
放疗的不良副作用仍然很常见,并且一些肿瘤还对放疗产生耐药性。
辐射的治疗效果。精密粒子放射治疗,特别是质子治疗的使用增加
放射治疗,使放射剂量能够精确地传递到肿瘤,从而避免
周围正常组织的任何不需要的辐射剂量,因此能够限制一些
不良副作用。此外,发射辐射的能力会对身体造成广泛损害。
肿瘤组织(所谓的“高LET”)也是有效放射治疗的显着优势。然而
尽管如此,质子和高 LET 辐射对人体的生物效应仍然存在不确定性。
正常细胞和肿瘤细胞和组织,以及如何优化放射治疗以造福患者。
该提案汇集了放射物理、生物学和临床肿瘤学领域的世界领先专家
揭示了质子和高 LET 辐射与传统(x-
射线)放射治疗,用于头颈肿瘤和脑肿瘤的细胞模型。这将在 2-
肿瘤的三维细胞模型,以及与观察到的更相似的 3 维细胞模型
在患者中。我们将彻底分析质子和高 LET 辐射对分子的精确影响
(DNA)水平,以及它与细胞整体存活的影响如何相关。我们也会调查
重要因素的作用,例如低氧水平(缺氧),这对于驱动抵抗力很重要
头颈和脑部实体瘤的放射治疗,以及放射治疗的速率
交付(特别是高剂量率,所谓的“FLASH”),对肿瘤的生物学和存活率
正常细胞。此外,我们将确定特定药物和抑制剂的组合
与质子和高 LET 辐射相结合更有效的各种条件优化
杀死肿瘤细胞,同时不伤害相关的正常细胞。
从长远来看,我们的研究将有助于识别和开发更有效的
使用放射疗法(包括质子束疗法)治疗头颈和脑部肿瘤的策略
对放射治疗特别有抵抗力。这将导致患者的病情得到改善
反应以及精密粒子放射治疗后的总体生存率。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Parsons其他文献
Jason Parsons的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 32.87万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 32.87万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 32.87万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 32.87万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 32.87万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 32.87万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 32.87万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 32.87万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 32.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 32.87万 - 项目类别:
Operating Grants














{{item.name}}会员




