Genome Editing Treatment for Catecholaminergic Polymorphic Ventricular Tachycardia
儿茶酚胺能多形性室性心动过速的基因组编辑治疗
基本信息
- 批准号:10441135
- 负责人:
- 金额:$ 4.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAgeAllelesArrhythmiaCRISPR therapeuticsCRISPR/Cas technologyCalciumCalcium ChannelCardiacCardiac MyocytesCardiovascular systemCatecholaminergic Polymorphic Ventricular TachycardiaConfocal MicroscopyDataDefibrillatorsDependovirusDiseaseDouble EffectEchocardiographyEffectivenessElectric StimulationElectrocardiogramEmotional StressEventExertionGenesGeneticGoalsHeartHeart AbnormalitiesHeart DiseasesHumanHuman GenomeImageIndividualInheritedInjectionsKnowledgeLeadLeftLentivirusLightLong-Term EffectsMeasuresMedicalMendelian disorderMessenger RNAMethodsMicroscopyMissionMolecular AnalysisMusMuscle CellsMutationOperative Surgical ProceduresOrganoidsOutcomePatientsPharmacological TreatmentPhysiologicalPre-Clinical ModelPredispositionProtein IsoformsProteinsPublic HealthReporter GenesResearchResearch Project GrantsRiskRyR2Ryanodine Receptor Calcium Release ChannelSarcoplasmic ReticulumSilent MutationSiteSpecificityStress TestsSudden DeathSympathectomySyncopeSystemTechnologyTestingUnited States National Institutes of HealthVariantVentricularVentricular ArrhythmiaVentricular Tachycardiabase editingcausal variantconfocal imagingdeep sequencingdisabilitydisease-causing mutationeffective therapygene therapygenome editingheart functionheart rhythmhuman diseaseimplantationimprovedin vivoinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesinsertion/deletion mutationknock-downmetabolomicsmortalitymouse modelmutantmutation correctionnon-compliancenovelnovel strategiesnovel therapeutic interventionpreservationpreventprime editingrepairedside effectsudden cardiac deathtargeted treatmenttherapeutic evaluationtherapeutic genome editingvector
项目摘要
There is a fundamental gap in treatment for Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT).
Pharmacological treatment of CPVT is partially effective for a disease that causes sudden death. A fuller
understanding of novel gene editing approaches is needed to develop safe, non-surgical, and effective
therapies that target the underlying causes of CPVT. In approximately 60% of CPVT patients, mutations in
RYR2 cause arrhythmia through abnormal calcium handling in cardiomyocytes. The lab has shown that using
CRISPR/Cas9 to knockdown the RYR2 mutant allele is effective in preventing ventricular tachycardia(VT) by
decreasing expression of dysfunctional RyR2. The overall objective of this application is to improve therapy for
patients with CPVT. Preliminary data generated by the applicant showed that directly targeting a disease-
causing mutation with traditional CRISPR/Cas9 therapy in a CPVT mouse model prevented pacing induced VT
but reduced total expression of RyR2. The central hypothesis of this proposal is that novel methods of
CRISPR/Cas9 gene editing can treat CPVT by specifically correcting causative mutation sites, reducing mutant
RyR2 expression while preserving total RyR2 expression, normalizing Ca2+ handling, and decreasing
susceptibility to VT. The rationale for this research is that an understanding of the effectiveness and specificity
of gene editing in the correcting mutations in the heart may lead to safe novel approaches to treat genetic
cardiac disorders. The hypothesis will be tested with the following specific aims 1) test the therapeutic potential
of human RYR2 mutation correction in an iPSC-CM preclinical model of CPVT and 2) test the therapeutic
potential of mouse RYR2 mutation correction in a mouse model of CPVT. To determine aim 1, we deliver
CRISPR/Cas9 prime editing vectors to IPSC, derive CM, and measure function through confocal and light
sheet imaging of IPSC and 3D cardiac organoids. To determine aim 2, we will use Lenti-CRISPR/Cas9 prime
editing vectors to treat mouse models of CPVT and measure long-term cardiac function through
echocardiography, EKG, programmed electrical stimulation, and molecular analysis. This research is
significant in that it will advance gene editing correction of RYR2 mutations as a safe and effective method for
the treatment of CPVT.
儿茶酚胺能多态性心脏心动过速(CPVT)的治疗方面存在基本差距。
CPVT的药理学治疗对于导致猝死的疾病部分有效。一个饱满
需要了解新型基因编辑方法来发展安全,非手术和有效
针对CPVT根本原因的治疗方法。在大约60%的CPVT患者中,突变
RYR2通过心肌细胞中的异常钙处理引起心律不齐。实验室表明使用
CRISPR/CAS9敲除RyR2突变等位基因可有效防止心室心动过速(VT)
功能失调的RYR2的表达降低。该应用的总体目的是改善
CPVT患者。申请人产生的初步数据表明,直接针对疾病 -
在CPVT小鼠模型中使用传统CRISPR/CAS9治疗引起突变,阻止了起搏引起的VT
但是降低了RYR2的总表达。该提议的中心假设是
CRISPR/CAS9基因编辑可以通过特异性纠正因果突变位点来治疗CPVT,从而减少突变体
RYR2表达在保留总RYR2表达,标准化Ca2+处理和减少的同时
对VT的敏感性。这项研究的理由是了解有效性和特异性
心脏校正突变中的基因编辑可能会导致安全的新方法治疗遗传
心脏疾病。该假设将以以下特定目的进行检验1)测试治疗潜力
CPVT的IPSC-CM临床前模型中的人RYR2突变校正和2)测试治疗
小鼠RYR2突变校正的电位在CPVT的小鼠模型中。为了确定目标1,我们交付
CRISPR/CAS9素数编辑向量iPSC,得出CM并通过共焦和光线量
IPSC和3D心脏器官的薄片成像。要确定目标2,我们将使用lenti-crispr/cas9 Prime
编辑向量以治疗CPVT的小鼠模型并通过
超声心动图,心电图,编程的电刺激和分子分析。这项研究是
重要的是,它将推动基因编辑校正RYR2突变,作为一种安全有效的方法
CPVT的处理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oliver Moore其他文献
Oliver Moore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oliver Moore', 18)}}的其他基金
Genome Editing Treatment for Catecholaminergic Polymorphic Ventricular Tachycardia
儿茶酚胺能多形性室性心动过速的基因组编辑治疗
- 批准号:
10156046 - 财政年份:2021
- 资助金额:
$ 4.71万 - 项目类别:
Genome Editing Treatment for Catecholaminergic Polymorphic Ventricular Tachycardia
儿茶酚胺能多形性室性心动过速的基因组编辑治疗
- 批准号:
10580838 - 财政年份:2021
- 资助金额:
$ 4.71万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 4.71万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 4.71万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 4.71万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 4.71万 - 项目类别: