An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome

一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性

基本信息

  • 批准号:
    10679749
  • 负责人:
  • 金额:
    $ 4.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-16 至 2025-11-15
  • 项目状态:
    未结题

项目摘要

Project Summary l The complexity of the human brain and lack of adequate models severely hinders our ability to understand mechanisms guiding neurodevelopment and neurodevelopmental disorders (NDDs), necessitating an innovative bioengineered approach for improving in vitro organotypic models of the human brain. Recent advances in stem cell-based neural organoids enable the formation of assembloids, which are fusions of organoids representing different brain regions. However, current approaches remain limited in the ability to properly recapitulate native brain cytoarchitecture and maturation within these organoids and also result in large heterogeneity due to the lack of a well-defined matrix. The proposed research seeks to resolve these critical issues by creating a reliable and reproducible in vitro environment for neural organoid culture to study aspects of neurodevelopment and NDDs that have been difficult to achieve with current platforms. To do this, I will 1) assess the effect of matrix biochemical cues for improving neural organoid architecture and maturation; 2) define the role of matrix stress relaxation and confinement on organoid growth; and 3) leverage the engineered hydrogel platform to study impaired interneuron migration in a disease model of 22q11.2 deletion syndrome (22q11DS). I hypothesize that the experiments described in my proposal will show that matrix-derived biochemical and biophysical signaling will allow for more robust neural organoid culture that better recapitulates the architecture and maturation of the human brain compared to conventional neural organoid models. I also hypothesize that fusion of 22q11DS neural organoids within engineered hydrogels will robustly demonstrate dysregulated interneuron migration mediated by the deletion of DCGR8. Of note, interneuron migration is a phenomenon that does not occur in murine systems and therefore cannot be studied using conventional murine models. To test this hypothesis, I will utilize a minimal matrix (HELP) to culture brain region-specific neural organoids derived from induced pluripotent stem cells (iPSCs) from healthy and 22q11DS patients. I will perform robust characterization of neural organoid architecture, maturation, and growth rate in response to tuning matrix biochemical and biophysical properties. I will also assess the ability of interneurons from 22q11DS patients to migrate into the dorsal forebrain by establishing a dorsal–ventral forebrain assembloid disease model. Together, these results will be critical for engineering a platform that is both permissive and instructive for robust and efficient neural organoid culture. In addition to expanding my scientific technical skills, my training plan includes development of mentorship, scientific writing, and presentation skills; training in research ethics; and enhancement of collaboration skills through a series of on-campus courses, workshops, and seminars as well as off-campus conferences. Altogether, this research proposal will empower me to become an independent, productive research scientist as I leverage the self- organizing capacity of stem cells and the tunable capacity of engineered materials to develop more human- relevant neural disease models.
项目摘要l 人类大脑的复杂性和缺乏足够的模型严重阻碍了我们的理解能力 指导神经发育和神经发育障碍(NDD)的机制,需要一种创新的 生物工程方法用于改进人脑的体外器官型模型。干细胞研究进展 基于细胞的神经类器官能够形成类神经元,类神经元是代表神经元的类器官的融合体。 不同的大脑区域。然而,目前的方法在正确概括天然的生物学特性方面仍然有限。 这些类器官内的脑细胞结构和成熟,也会导致大的异质性, 缺乏明确的矩阵。拟议的研究旨在通过创建一个可靠的 以及用于神经类器官培养的可重复的体外环境,以研究神经发育的各个方面, 目前的平台难以实现的NDD。为此,我将1)评估矩阵的效果 改善神经类器官结构和成熟的生化线索; 2)定义基质应激的作用 松弛和限制类器官生长;以及3)利用工程化水凝胶平台来研究 22q11.2缺失综合征(22 q11 DS)疾病模型中的中间神经元迁移受损。我假设 在我的建议中描述的实验将表明,基质衍生的生物化学和生物物理信号 将允许更稳健的神经类器官培养,其更好地再现神经细胞的结构和成熟。 与传统的神经类器官模型相比,人脑。我还假设22 q11 DS神经融合 工程水凝胶内的类器官将有力地证明神经元间迁移介导的失调 通过删除DCGR 8。值得注意的是,中间神经元迁移是一种在小鼠系统中不发生的现象 因此不能使用常规的鼠模型进行研究。为了验证这个假设,我将使用一个最小的 基质(HELP)来培养源自诱导多能干细胞的脑区域特异性神经类器官 (iPSCs)来自健康和22 q11 DS患者。我将对神经类器官结构进行强有力的表征, 成熟和响应于调节基质生物化学和生物物理性质的生长速率。我也会 评估22 q11 DS患者的中间神经元迁移到背侧前脑的能力, 背腹前脑类神经病模型。总之,这些结果将是至关重要的工程 这是一个既允许又有益于强大而有效的神经类器官培养的平台。除了 扩展我的科学技术技能,我的培训计划包括发展导师制,科学写作, 和演讲技巧;研究道德培训;通过一系列 校内课程、工作坊和研讨会以及校外会议。总之,这项研究 建议将使我成为一个独立的,富有成效的研究科学家,因为我利用自我- 干细胞的组织能力和工程材料的可调能力,以开发更多的人类- 相关的神经疾病模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michelle S Huang其他文献

IR laser welding of thin polymer films as a fabrication method for polymer MEMS
聚合物薄膜的红外激光焊接作为聚合物 MEMS 的制造方法
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Beck;Michelle S Huang;J. Ketterl;T. Hughes
  • 通讯作者:
    T. Hughes
Asymmetrical selection maintains heritable phenotypic variation between two subspecies of Monardella villosa.
不对称选择维持了绒毛蒙纳德拉两个亚种之间的可遗传表型变异。
  • DOI:
    10.1002/ajb2.1287
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Taylor M. Crow;J. Yost;Michelle S Huang;Matthew K. Ritter
  • 通讯作者:
    Matthew K. Ritter

Michelle S Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

REU Site: Design, Create, and Innovate 3-Dimensional User Interfaces to Improve Human Sensory and Motor Performance in Virtual Environments (HUMANS MOVE)
REU 网站:设计、创建和创新 3 维用户界面,以提高虚拟环境中的人类感官和运动表现 (HUMANS MOVE)
  • 批准号:
    2349771
  • 财政年份:
    2024
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Standard Grant
CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
  • 批准号:
    2340085
  • 财政年份:
    2024
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Continuing Grant
Artificial fabrication of 3-dimensional noncollinear magnetic order and magnetization manipulation by spin torque
三维非共线磁序的人工制造和自旋转矩磁化操纵
  • 批准号:
    23H00232
  • 财政年份:
    2023
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Understanding of 3-dimensional seismic behavior of RC frame high-speed railway/highway viaducts using FE analysis
使用有限元分析了解 RC 框架高速铁路/公路高架桥的 3 维抗震性能
  • 批准号:
    23H01489
  • 财政年份:
    2023
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
  • 批准号:
    10736961
  • 财政年份:
    2023
  • 资助金额:
    $ 4.56万
  • 项目类别:
The 3-dimensional nest of the honey bee: organization, development, and impact on colony function
蜜蜂的 3 维巢穴:组织、发育及其对蜂群功能的影响
  • 批准号:
    2216835
  • 财政年份:
    2023
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Standard Grant
Research on high-density 3-dimensional polymer optical waveguide device for photonics-electronics convergence
光电子融合高密度三维聚合物光波导器件研究
  • 批准号:
    23H01882
  • 财政年份:
    2023
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Scaff-Net: 3 Dimensional multiphoton polymerisation printed scaffolds for medium throughput recording from stem cell derived human cortical networks.
Scaff-Net:3 维多光子聚合打印支架,用于从干细胞衍生的人类皮质网络进行中等通量记录。
  • 批准号:
    EP/X018385/1
  • 财政年份:
    2023
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Research Grant
3-dimensional prompt gamma imaging for online proton beam dose verification
用于在线质子束剂量验证的 3 维瞬发伽马成像
  • 批准号:
    10635210
  • 财政年份:
    2023
  • 资助金额:
    $ 4.56万
  • 项目类别:
Equipment: MRI: Track 1 Acquisition of a 3-Dimensional Nanolithography Instrument
设备:MRI:轨道 1 获取 3 维纳米光刻仪器
  • 批准号:
    2320636
  • 财政年份:
    2023
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了