Homologous Recombination Repair Domains: Formation and Impact on Genome Stability
同源重组修复域:形成及其对基因组稳定性的影响
基本信息
- 批准号:10440346
- 负责人:
- 金额:$ 5.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:ANGPTL2 geneActinsAffectBRCA1 geneBRCA2 geneBiological AssayCell CycleCell Cycle StageCell LineCellsChemotherapy-Oncologic ProcedureChromosomal RearrangementChromosomal translocationComplementComplexDNADNA AdductsDNA DamageDNA Double Strand BreakDNA RepairDNA Restriction EnzymesDataDefectDevelopmentDouble Strand Break RepairDown-RegulationEtoposideEventExcisionFibrinogenFilamentFrequenciesGenerationsGenesGeneticGenomeGenome StabilityGenomic InstabilityGenomicsGoalsHi-CIndividualKnock-outLeadLinkLocationMalignant NeoplasmsMammalian CellMediatingMovementMutateMutationNonhomologous DNA End JoiningNuclearPathologicPathway interactionsPhosphotransferasesPlayPoisoningPolymersProcessProteinsRoleSiteSmall Interfering RNATechnologyTherapy-Related Acute Myeloid LeukemiaTopoisomerase IITopoisomerase-II InhibitorTumor Suppressor GenesWASP proteinWiskott-Aldrich SyndromeWorkYeastsalpha-Thalassemiacarcinogenesischemotherapeutic agentchromosome conformation captureexperimental studygene interactiongene translocationgenome-widegenome-wide analysisgenomic locusgenotoxicityhomologous recombinationimproved mobilityinhibitorinsightleukemialive cell imagingnovelpolymerizationpreventrecombinational repairrepairedsmall molecule inhibitorsoft tissuetumortumorigenesis
项目摘要
PROJECT SUMMARY: DNA double-strand break (DSB) repair is spatially organized into nuclear repair domains
that specifically facilitate DSB repair by homologous recombination (HR). HR, one of the major DSB pathways
along with non-homologous end-joining, has been implicated in tumorigenesis, notably following mutations in
the tumor suppressor genes BRCA1 and BRCA2 [1, 2]. Our lab demonstrated that upon DSB formation by
induction of a restriction endonuclease (RE) or treatment with neocarzinostatin (NCS), WASP activates ARP2/3,
which polymerizes nuclear actin into branched filaments [4]. This enhances the mobility of DSBs destined for HR
and their subsequent clustering into HR domains.
The DNA topoisomerase II (Top2) inhibitor etoposide (ETO) yields DSBs harboring protein-DNA adducts that
require resection and subsequent repair by HR factors, including MRN, CtIP, and BRCA1 [5, 6]. Because of the
absolute requirement for poisoned Top2 removal prior to repair, ETO is a unique way to probe the functional
relationship between resection and movement. ETO is used to treat a wide range of cancers, including leukemia
and soft tissue cancers. However, treatment is associated with secondary leukemias due to translocations. Using
live-cell imaging, I show that ETO DSBs undergo ARP2/3-mediated movement and clustering. However, unlike
RE and NCS DSBs, movement is not restricted to G2 but also occurs in G1. Additionally, ETO breaks in G1
undergo resection and load HR machinery, such as RPA. I have also begun examining the role of HR factors,
including Mre11 and BRCA2, in repair domain formation following the generation of DSBs by RE, NCS and ETO.
Although DSB clustering is crucial for HR, little is known about how repair domains are formed and their local
and genome-wide implications. For example, we do not fully understand the crosstalk between movement (actin,
WASP) and repair (HR machinery) in mammalian cells. Additionally, the dynamics of DSBs likely influences
chromosomal rearrangements. Our lab is integrating high-throughput genomic technologies that assess gene-
gene interactions and translocation events to determine the genome-wide implications of DSB mobility. The
overarching goals of this study are to elucidate mechanisms by which nuclear actin polymerization and HR
proteins regulate repair domain formation and to evaluate the genome-wide impact of DSB mobility. I
hypothesize that HR proteins, including the resection machinery, play a critical role in regulating ARP2/3-
mediated DSB movements and subsequent clustering. I further propose that nuclear actin polymerization
impacts genome organization following DNA damage and thus affects translocation frequency. I will investigate
these hypotheses in the following aims:
Aim 1: Elucidate the contribution of HR machinery to Arp2/3-dependent DSB clustering.
Aim 2: Determine the impact of ARP2/3-mediated DSB movement on genome stability.
项目摘要:DNA 双链断裂 (DSB) 修复在空间上组织成核修复域
其通过同源重组 (HR) 专门促进 DSB 修复。 HR,DSB 的主要途径之一
与非同源末端连接一起,与肿瘤发生有关,特别是在突变之后
抑癌基因 BRCA1 和 BRCA2 [1, 2]。我们的实验室证明 DSB 形成后
诱导限制性核酸内切酶 (RE) 或用新制癌菌素 (NCS) 治疗,WASP 激活 ARP2/3,
它将核肌动蛋白聚合成分支丝 [4]。这增强了人力资源 DSB 的流动性
以及它们随后聚集到人力资源领域。
DNA 拓扑异构酶 II (Top2) 抑制剂依托泊苷 (ETO) 产生含有蛋白质-DNA 加合物的 DSB,
需要切除并随后通过 HR 因子进行修复,包括 MRN、CtIP 和 BRCA1 [5, 6]。因为
在修复之前绝对需要去除有毒的 Top2,ETO 是探测功能的独特方法
切除与运动的关系。 ETO 用于治疗多种癌症,包括白血病
和软组织癌。然而,治疗与易位引起的继发性白血病有关。使用
通过活细胞成像,我展示了 ETO DSB 经历 ARP2/3 介导的运动和聚集。然而,与
RE 和 NCS DSB,移动不仅限于 G2,也发生在 G1。此外,ETO 在 G1 中破局
进行切除并加载 HR 机械,例如 RPA。我也开始研究人力资源因素的作用,
包括 Mre11 和 BRCA2,在 RE、NCS 和 ETO 生成 DSB 后形成修复域。
尽管 DSB 聚类对于 HR 至关重要,但人们对修复域的形成方式及其局部性知之甚少。
和全基因组的影响。例如,我们并不完全理解运动之间的串扰(肌动蛋白、
WASP)和哺乳动物细胞中的修复(HR 机制)。此外,DSB 的动态可能会影响
染色体重排。我们的实验室正在整合高通量基因组技术来评估基因
基因相互作用和易位事件,以确定 DSB 迁移性的全基因组影响。这
本研究的总体目标是阐明核肌动蛋白聚合和 HR 的机制
蛋白质调节修复域的形成并评估 DSB 迁移性对全基因组的影响。我
假设 HR 蛋白(包括切除机制)在调节 ARP2/3 中发挥关键作用-
介导的 DSB 运动和随后的聚类。我进一步提出核肌动蛋白聚合
影响 DNA 损伤后的基因组组织,从而影响易位频率。我会调查
这些假设的目的如下:
目标 1:阐明 HR 机制对 Arp2/3 依赖的 DSB 聚类的贡献。
目标 2:确定 ARP2/3 介导的 DSB 运动对基因组稳定性的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Ashley Zagelbaum其他文献
Jennifer Ashley Zagelbaum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Ashley Zagelbaum', 18)}}的其他基金
Homologous Recombination Repair Domains: Formation and Impact on Genome Stability
同源重组修复域:形成及其对基因组稳定性的影响
- 批准号:
10212281 - 财政年份:2020
- 资助金额:
$ 5.18万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 5.18万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 5.18万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 5.18万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 5.18万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 5.18万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 5.18万 - 项目类别:














{{item.name}}会员




