Formation and function of cell curvature in Vibrio cholerae
霍乱弧菌细胞曲率的形成和功能
基本信息
- 批准号:10443303
- 负责人:
- 金额:$ 32.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-07 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgarBacteriaBacterial ProteinsBehaviorBehavioralBindingBiochemicalBiological ModelsBiophysicsCaulobacter crescentusCell ShapeCell WallCell physiologyCellsCellular biologyCharacteristicsCryoelectron MicroscopyCytoplasmCytoskeletonDefectDistantElectron MicroscopyElementsEnergy-Generating ResourcesEngineeringEnvironmentEnzymesEscherichia coliFaceFluorescence MicroscopyGelGeometryGrowthGuanosine TriphosphateHigher Order Chromatin StructureImpairmentIn VitroIntestinesKnowledgeLearningMediatingMicrobial BiofilmsMicrobiologyMolecularMorphogenesisMucous MembraneMucous body substanceMusMutagenesisNatureOxidesPathogenesisPatternPeriplasmic ProteinsPolymersProcessProteinsPseudomonas aeruginosaReportingRhizobium radiobacterRodRoleShapesStructureSurfaceSystemTotal Internal Reflection FluorescentVibrioVibrio choleraeWorkbasecell behaviorcell motilitycellular imagingcopolymerexperimental studyfollow-uphuman pathogenin vivoinsightmolecular scalemutantpathogenperiplasmpolymerizationscreeningtool
项目摘要
Curved bacteria represent one of the most common of bacterial shapes yet the mechanisms by which
bacteria become curved and the functions of curvature are largely unknown. In addition, large-scale polymers
assemble in both the cytoplasm and periplasm yet only the cytoplasmic polymers have been well characterized
to date. This is an important distinction, as periplasmic proteins must contend with different molecular
environments like oxidizing conditions and a lack of ATP/GTP energy sources. My lab recently demonstrated
that two proteins, CrvA and CrvB, assemble into periplasmic structures that are essential for establishing cell
curvature in the pathogen, Vibrio cholerae. Here we propose to leverage this system to address the field’s
gaps in understanding both curved shapes and periplasmic polymer formation.
In previous work, we identified and characterized the first curvature determinant in V. cholerae, CrvA.
CrvA forms polymers in the periplasm that pattern the insertion of new cell wall to cause these bacteria to
curve. More recently we discovered a second curvature determinant, CrvB. CrvA and CrvB colocalize in the V.
cholerae periplasm, and CrvA and CrvB co-expression are sufficient to induce curvature in straight Vibrio
species, E. coli, P. aeruginosa, and even distantly-related C. crescentus and A. tumefaciens.
Here we seek to better understand bacterial curvature determination and function by answering three
outstanding questions in three aims. 1) How do CrvA/B assemble in the periplasm, whose oxidizing conditions
and lack of ATP/GTP make it a very different environment from the cytoplasm where well-characterized
cytoskeletons assemble? Aim 1 will answer this question by combining electron and fluorescence microscopy
to determine the structure and dynamics of CrvA/CrvB assembly. 2) How do CrvAB actually generate cell
curvature? CrvAB are distinct from previously-characterized shape determinants in both being periplasmic and
functioning autonomously of other shape-patterning elements like MreB. Aim 2 will thus address how CrvA and
CrvB induce curvature by identifying and characterizing their interactions with the cell wall and other partners.
3) How does curvature affect bacterial behaviors? Aim 3 will harness our ability to synthetically curve bacteria
and use single-cell imaging to determine how curvature affects motility in gels, biofilms, and on surfaces.
These experiments will dissect the biophysical basis of important behaviors that result from cell curvature.
Together these studies will establish V. cholerae CrvAB as a powerful model system for studying cell
shape across multiple scales, answering fundamental questions to advance several fields. First, at the
molecular scale, we will learn how polymers form in the periplasm. Second, at the cellular scale, we will learn
how two proteins can curve an immense range of bacteria. And third, at the behavioral/evolutionary scale, we
will learn the benefits conferred by one of the most common of bacterial shapes.
弯曲的细菌代表了最常见的细菌形状之一,但其机制是
细菌变得弯曲,并且弯曲的功能在很大程度上是未知的。此外,大型聚合物
在细胞质和周质中组装,但只有细胞质聚合物被很好地表征
迄今这是一个重要的区别,因为周质蛋白必须与不同的分子竞争。
环境如氧化条件和缺乏ATP/GTP能源。我的实验室最近证明
两种蛋白质CrvA和CrvB组装成周质结构,这是建立细胞所必需的,
弯曲的病原体霍乱弧菌。在这里,我们建议利用这个系统来解决该领域的
在理解弯曲形状和周质聚合物形成方面存在差距。
在以前的工作中,我们确定和特征的第一曲率行列式的V. cholesterol,CrvA。
CrvA在周质中形成聚合物,这些聚合物形成新细胞壁的插入模式,从而导致这些细菌
曲线最近,我们发现了第二个曲率行列式,CrvB。CrvA和CrvB共定位于V.
霍乱周质,以及CrvA和CrvB共表达足以诱导直弧菌弯曲
种E.大肠杆菌、铜绿假单胞菌,甚至远亲的C. crescentus和A.根瘤菌
在这里,我们试图通过回答三个问题来更好地理解细菌曲率的决定和功能。
三个目标中的突出问题。1)CrvA/B如何在周质中组装,其氧化条件
和缺乏ATP/GTP使其成为一个非常不同的环境,从细胞质中,
细胞骨架组装?AIM 1将通过结合电子和荧光显微镜来回答这个问题
以确定CrvA/CrvB组件的结构和动力学。2)CrvAB实际上是如何产生细胞的
曲率?CrvAB与先前表征的形状决定子的不同之处在于其是周质的,
像MreB这样的其他形状图案元素的自主功能。因此,目标2将解决CrvA和
CrvB通过识别和表征它们与细胞壁和其他伴侣的相互作用来诱导曲率。
3)曲率如何影响细菌的行为?目标3将利用我们的能力,
并使用单细胞成像来确定曲率如何影响凝胶、生物膜和表面上的运动性。
这些实验将剖析由细胞弯曲导致的重要行为的生物物理基础。
这些研究将使霍乱弧菌CrvAB成为一个研究细胞生物学的强有力的模型系统
形状跨越多个尺度,回答基本问题,以推进几个领域。一是在
在分子尺度上,我们将学习聚合物如何在周质中形成。第二,在细胞尺度上,我们将学习
两种蛋白质是如何改变一系列细菌的第三,在行为/进化尺度上,我们
将学习最常见的细菌形状之一所带来的好处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zemer Gitai其他文献
Zemer Gitai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zemer Gitai', 18)}}的其他基金
Formation and function of cell curvature in Vibrio cholerae
霍乱弧菌细胞曲率的形成和功能
- 批准号:
10661553 - 财政年份:2022
- 资助金额:
$ 32.46万 - 项目类别:
Mechano-microbiology: how physical forces control bacterial-host interactions
机械微生物学:物理力如何控制细菌与宿主的相互作用
- 批准号:
9140003 - 财政年份:2015
- 资助金额:
$ 32.46万 - 项目类别:
Caulobacter cell shape and cytoskeletal regulation
柄杆菌细胞形状和细胞骨架调节
- 批准号:
8560432 - 财政年份:2013
- 资助金额:
$ 32.46万 - 项目类别:
Caulobacter cell shape and cytoskeletal regulation
柄杆菌细胞形状和细胞骨架调节
- 批准号:
8860201 - 财政年份:2013
- 资助金额:
$ 32.46万 - 项目类别:
Caulobacter cell shape and cytoskeletal regulation
柄杆菌细胞形状和细胞骨架调节
- 批准号:
8723866 - 财政年份:2013
- 资助金额:
$ 32.46万 - 项目类别:
Predoctoral Training in Genetics and Molecular Biology
遗传学和分子生物学博士前培训
- 批准号:
8691828 - 财政年份:1977
- 资助金额:
$ 32.46万 - 项目类别:
Predoctoral Training in Genetics and Molecular Biology
遗传学和分子生物学博士前培训
- 批准号:
9306146 - 财政年份:1977
- 资助金额:
$ 32.46万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 32.46万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 32.46万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 32.46万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 32.46万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 32.46万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 32.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 32.46万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 32.46万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 32.46万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 32.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists