Hydrogen Embrittlement Protection Coating (HEPCO)

氢脆保护涂层 (HEPCO)

基本信息

  • 批准号:
    10075545
  • 负责人:
  • 金额:
    $ 40.34万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Collaborative R&D
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

**Hydrogen** is considered a fundamental energy vector to achieve net zero emissions by 2050, as reflected both by UK and EU government policies. However, use of hydrogen brings significant material challenges, with **hydrogen embrittlement (HE)** being the most critical. Development of innovative Hydrogen Embrittlement Protection Coating is a collaborative effort of UK and German material science companies and research institutions to provide Hydrogen economy with an enabling technology to prevent failures of metal components caused by HE. Currently prevention of HE is sought through selection of special, often expensive metal alloys that have reduced level of HE. That is negatively reflected in the cost of the components and limits areas of hydrogen application. Alternative approach to prevent HE is application of Hydrogen Permeation Barrier (HPB) coatings. Although some commercial HPBs exist, they are limited to niche applications (e.g., H2 bottles) and are often kept as trade secret. It is known however that often-used HPBs are based on Gold (Au, very expensive) and Cadmium (Cd, toxic). UK company Cambridge Nanolitic Limited (CNL) developed an innovative technology for building protective ceramic layers on metal components by a proprietary environmentally friendly electro-chemical oxidation (ECO) technology. ECO coating has been successfully commercialised in automotive, packaging, textile, and electronic industries as corrosion- and wear- resistant protective coatings superior to competing state of the art technologies of anodising, plasma sprayed ceramic, PVD and Plasma Electrolytic Oxidation. ECO coating is a densely packed nanocrystalline aluminium oxide layer atomically bonded to aluminium substrate. Due to nanocrystalline structure it is resistant to thermal and mechanical deformations.Adaptation of CNL technology for hydrogen application will be made by enhancing the structure of nanoceramic oxide layer. Aluminium oxide is known to be a perfect HPB material. Hydrogen permeation resistance would be further enhanced through sealing of ECO ceramic by appropriate media.German company NTTF has a successful experience in developing barrier coatings for various materials including Alumina. NTTF has capacities and skills to development optimal topcoat sealing for ECO ceramic to build a combined coating with efficient HPB properties.Characterisation of novel HPB coatings will be conducted by The Max Planck Institute of Iron Research (Germany) and Cranfield University (UK). The project is believed to bring both academic and applied scientific contribution in understanding Hydrogen Embrittlement processes resulting in an efficient HE protection technology.
**氢**被认为是到2050年实现净零排放的基本能源载体,英国和欧盟政府的政策都反映了这一点。然而,氢的使用带来了重大的材料挑战,其中**氢脆(HE)**是最关键的。创新的氢脆保护涂层的开发是英国和德国材料科学公司和研究机构的合作努力,旨在为氢经济提供使能技术,以防止由HE导致的金属部件失效。目前寻求通过选择特殊的、通常昂贵的金属合金来预防HE,这些合金降低了HE的水平。这负面地反映在零部件的成本和氢气应用的限制领域。防止HE的另一种方法是应用氢渗透屏障(HPB)涂层。尽管存在一些商用HPB,但它们仅限于利基应用(例如H2瓶),并且通常作为商业秘密保密。然而,众所周知,常用的HPB是以黄金(Au,非常昂贵)和镉(Cd,有毒)为基础的。英国公司剑桥纳米科技有限公司(CNL)开发了一项创新技术,通过专有的环保电化学氧化(ECO)技术在金属部件上构建保护性陶瓷层。ECO涂层已成功地在汽车、包装、纺织和电子工业中商业化,作为耐蚀和耐磨保护涂层,优于与之竞争的最先进技术,如阳极氧化、等离子喷涂陶瓷、PVD和等离子电解氧化。ECO涂层是一种紧密堆积的纳米晶氧化铝涂层,与铝基材原子结合。由于纳米晶的结构,它可以抵抗热变形和机械变形。CNL技术将通过增强纳米陶瓷氧化层的结构来适应氢气应用。氧化铝被认为是一种完美的HPB材料。德国NTTF公司在开发包括氧化铝在内的各种材料的阻隔涂层方面具有成功的经验。NTTF有能力和技能为生态陶瓷开发最佳面漆密封,以构建具有高效HPB性能的组合涂层。新型HPB涂层的表征将由马克斯·普朗克铁研究所(德国)和克兰菲尔德大学(英国)进行。该项目被认为在理解氢脆过程方面带来了学术和应用科学贡献,从而产生了一种有效的HE保护技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship

相似海外基金

Zero Embrittlement H2 Tank Coating Testing ( Phase 3 )
零脆化氢气储罐涂层测试(第 3 阶段)
  • 批准号:
    10106846
  • 财政年份:
    2024
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Launchpad
Coating network and barrier property design strategies, for protection against hydrogen embrittlement
涂层网络和阻隔性能设计策略,以防止氢脆
  • 批准号:
    2902353
  • 财政年份:
    2024
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
Fabrication of 5xxx/7xxx Crossover Alloys: T-Phase Precipitation to Achieve Hydrogen Embrittlement Resistance
5xxx/7xxx 交叉合金的制造:T 相沉淀以实现抗氢脆性
  • 批准号:
    23K04413
  • 财政年份:
    2023
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New approaches to understanding hydrogen embrittlement in steels
理解钢中氢脆的新方法
  • 批准号:
    2897405
  • 财政年份:
    2023
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
Elucidating origin of the trade-off relationship between tensile strength and resistance to hydrogen embrittlement in martensitic steels from a view point of local deformation behavior
从局部变形行为的角度阐明马氏体钢抗拉强度和抗氢脆性之间的权衡关系的起源
  • 批准号:
    23K13541
  • 财政年份:
    2023
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Clarification of hydrogen embrittlement in steel based on visualization of hydrogen using magnetic small-angle neutron scattering
基于磁小角中子散射氢可视化澄清钢中的氢脆
  • 批准号:
    23H01733
  • 财政年份:
    2023
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Digital-twin visualization of hydrogen in materials to elucidate the mechanism of hydrogen embrittlement
材料中氢的数字孪生可视化以阐明氢脆机制
  • 批准号:
    23H00161
  • 财政年份:
    2023
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Multi-modal 3D image-based analysis of hydrogen embrittlement behavior in Al-Zn-Mg alloy via local hydrogen accumulation
基于多模态 3D 图像的 Al-Zn-Mg 合金局部氢积累氢脆行为分析
  • 批准号:
    23K13564
  • 财政年份:
    2023
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New Approaches to Understanding Hydrogen Embrittlement of Steels
了解钢氢脆的新方法
  • 批准号:
    2790946
  • 财政年份:
    2023
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
Next Generation Electro-Chemo-Mechanical Models for Hydrogen Embrittlement (NEXTGEM)
下一代氢脆电化学机械模型 (NEXTGEM)
  • 批准号:
    EP/V009680/2
  • 财政年份:
    2023
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了