Next Generation Electro-Chemo-Mechanical Models for Hydrogen Embrittlement (NEXTGEM)

下一代氢脆电化学机械模型 (NEXTGEM)

基本信息

  • 批准号:
    EP/V009680/2
  • 负责人:
  • 金额:
    $ 37.85万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Hydrogen is ubiquitous and has two faces. On the one hand, it is at the core of the most promising solutions to our energy crisis. Hydrogen isotopes fuel the nuclear fusion reaction, the most efficient potentially useable energy process. Moreover, hydrogen is widely seen as energy carrier of the future and the most versatile means of energy storage. It can be produced via electrolysis from renewable sources, such as wind or solar power, and stored to be used as a fuel or as a raw material in the chemical industry.On the other hand, hydrogen is widely known to cause catastrophic failures in metallic materials and structures, hampering these opportunities. Metals become brittle when exposed to hydrogen-containing environments, with the fracture resistance decreasing by up to 90%. This so-called hydrogen embrittlement phenomenon not only jeopardises the role of hydrogen as a potential solution to the global energy crisis but also constitutes one of the biggest threats to the integrity of the current energy infrastructure. The problem is particularly severe in aggressive environments, such as those experienced by the offshore industry, as corrosive mitigation strategies like cathodic protection exacerbate the production of hydrogen. Moreover, hydrogen embrittlement is becoming increasingly notorious due to the higher susceptibility of modern, high-strength steels. Decades of metallurgical research have led to the development of metals with high and ultra-high strengths. These modern alloys open new horizons in reducing weight, material use and costs while increasing performance and safety (fatigue resistance). For example, ultra-high strength steels are essential in meeting targets on CO2 emissions through vehicle weight reduction. However, the susceptibility to hydrogen embrittlement increases with material strength and the increasing uptake of these new high-performance materials has made hydrogen assisted fractures commonplace across a wide variety of sectors and applications in otherwise benign environments, from bolt cracking at the Leadenhall tower to rail failures in underground systems. There is an urgent need to understand the multiple physical mechanisms behind this hydrogen-induced degradation and develop models that can predict failures as a function of the environment, the loading conditions and the material properties.This EPSRC New Investigator Award aims at developing a new generation of models that can predict local hydrogen uptake and subsequent cracking by resolving the electrochemistry-diffusion interface and shedding light into critical uncertainties in surface behaviour and trapping. An accurate estimation of hydrogen ingress for a given bulk environment is the main bottleneck preventing the application of current chemo-mechanics models in engineering assessment. Occluded areas such as cracks, pits or other defects exhibit very different chemistry to the bulk environment, and local measurements are unfeasible apart from controlled laboratory experiments. NEXTGEM will merge mechanics with electrochemistry, combining experiments, multi-physics modelling and Bayesian inference to resolve the scientific challenges holding back the applicability of hydrogen embrittlement models. This new generation of electro-chemo-mechanics models for hydrogen embrittlement will be used to enable a safe use of high strength alloys, optimise material selection and inspection planning, and prevent catastrophic failures.The project involves world-renowned academic collaborators with expertise complementary to that of the PI and leading firms in the offshore energy sector, operating the oldest large-scale wind farm in the world (Horns Rev 1). The applicability of the models developed will be demonstrated by continuous monitoring of critical components, in a piece of proof-of-concept research that can have wider implications across the transport, defence, construction and energy sectors.
氢无处不在,而且有两面。一方面,它是解决能源危机最有希望的解决方案的核心。氢同位素为核聚变反应提供燃料,这是最有效的潜在可用能源过程。此外,氢被广泛视为未来的能源载体和最通用的能源储存手段。它可以通过电解从风能或太阳能等可再生能源中生产,并储存起来用作燃料或化学工业的原材料。另一方面,众所周知,氢会导致金属材料和结构的灾难性故障,阻碍了这些机会。金属暴露在含氢环境中会变脆,抗断裂能力下降高达90%。这种所谓的氢脆现象不仅危及氢作为全球能源危机潜在解决方案的作用,而且对当前能源基础设施的完整性构成了最大的威胁之一。这个问题在恶劣的环境中尤其严重,例如海上工业所经历的环境,因为阴极保护等腐蚀缓解策略加剧了氢气的产生。此外,由于现代高强度钢的高敏感性,氢脆正变得越来越臭名昭著。几十年的冶金研究导致了高强度和超高强度金属的发展。这些现代合金在减轻重量、材料使用和成本方面开辟了新的领域,同时提高了性能和安全性(抗疲劳性)。例如,超高强度钢对于通过减轻车辆重量实现二氧化碳排放目标至关重要。然而,随着材料强度的增加,对氢脆的敏感性也在增加,这些新型高性能材料的使用越来越多,使得氢辅助断裂在各种行业和其他良性环境中的应用变得普遍,从Leadenhall塔的螺栓开裂到地下系统的轨道故障。目前迫切需要了解这种氢诱导降解背后的多种物理机制,并开发能够预测环境、加载条件和材料特性的失效的模型。EPSRC新研究者奖旨在开发新一代模型,通过解决电化学-扩散界面,揭示表面行为和俘获的关键不确定性,从而预测局部氢吸收和随后的开裂。如何准确估计给定体积环境下的入氢量是目前化学力学模型在工程评价中应用的主要瓶颈。封闭区域,如裂缝、凹坑或其他缺陷,与整体环境表现出非常不同的化学性质,除了受控的实验室实验之外,局部测量是不可行的。NEXTGEM将力学与电化学相结合,结合实验、多物理场建模和贝叶斯推理来解决阻碍氢脆模型适用性的科学挑战。这种新一代氢脆电化学力学模型将用于确保高强度合金的安全使用,优化材料选择和检查计划,并防止灾难性故障。该项目涉及世界知名的学术合作者,他们的专业知识与PI和海上能源领域的领先公司互补,运营世界上最古老的大型风电场(霍恩Rev 1)。开发的模型的适用性将通过对关键部件的持续监测来证明,这是一项概念验证研究,可以在运输、国防、建筑和能源部门产生更广泛的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emilio Martinez-Paneda其他文献

Emilio Martinez-Paneda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emilio Martinez-Paneda', 18)}}的其他基金

Turning defects into allies to develop intrinsic resistance to hydrogen-induced fractures (ResistHfracture)
化缺陷为盟友,增强对氢致断裂的内在抵抗力 (ResistHfracture)
  • 批准号:
    EP/Y037219/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.85万
  • 项目类别:
    Research Grant
New Phase Field Models for Unravelling Multi-Physics Material Degradation Challenges (NEWPHASE)
用于解决多物理材料降解挑战的新相场模型 (NEWPHASE)
  • 批准号:
    MR/V024124/2
  • 财政年份:
    2023
  • 资助金额:
    $ 37.85万
  • 项目类别:
    Fellowship
Next Generation Electro-Chemo-Mechanical Models for Hydrogen Embrittlement (NEXTGEM)
下一代氢脆电化学机械模型 (NEXTGEM)
  • 批准号:
    EP/V009680/1
  • 财政年份:
    2021
  • 资助金额:
    $ 37.85万
  • 项目类别:
    Research Grant
Nanovoids for Developing New Hydrogen-resistant Materials (NanoHMAT)
用于开发新型抗氢材料的纳米空隙(NanoHMAT)
  • 批准号:
    EP/V04902X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 37.85万
  • 项目类别:
    Research Grant
New Phase Field Models for Unravelling Multi-Physics Material Degradation Challenges (NEWPHASE)
用于解决多物理材料降解挑战的新相场模型 (NEWPHASE)
  • 批准号:
    MR/V024124/1
  • 财政年份:
    2021
  • 资助金额:
    $ 37.85万
  • 项目类别:
    Fellowship

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

Sus-Flow: Accelerating Sustainable Continuous Medicine Manufacture via Photo-, Electro-and Thermo-chemistry with Next-Generation Reactors
Sus-Flow:利用下一代反应器通过光化学、电化学和热化学加速可持续连续药物制造
  • 批准号:
    EP/Z53299X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.85万
  • 项目类别:
    Research Grant
CAREER: Electro-Chemo-Mechanics of Multiscale Active Materials for Next-Generation Energy Storage
职业:用于下一代储能的多尺度活性材料的电化学力学
  • 批准号:
    2237990
  • 财政年份:
    2023
  • 资助金额:
    $ 37.85万
  • 项目类别:
    Standard Grant
Manufacturing the Next-Generation of Soft Robotics with Ultra-Efficient, Strong, Electro-Mechanical Artificial Muscles
使用超高效、强大的机电人工肌肉制造下一代软体机器人
  • 批准号:
    RGPIN-2021-02791
  • 财政年份:
    2022
  • 资助金额:
    $ 37.85万
  • 项目类别:
    Discovery Grants Program - Individual
Electro-Collapse Jetting: Towards the Next Generation of Printing Technologies
电塌陷喷射:迈向下一代印刷技术
  • 批准号:
    EP/V04382X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 37.85万
  • 项目类别:
    Research Grant
Next Generation Electro-Chemo-Mechanical Models for Hydrogen Embrittlement (NEXTGEM)
下一代氢脆电化学机械模型 (NEXTGEM)
  • 批准号:
    EP/V009680/1
  • 财政年份:
    2021
  • 资助金额:
    $ 37.85万
  • 项目类别:
    Research Grant
Manufacturing the Next-Generation of Soft Robotics with Ultra-Efficient, Strong, Electro-Mechanical Artificial Muscles
使用超高效、强大的机电人工肌肉制造下一代软体机器人
  • 批准号:
    DGECR-2021-00269
  • 财政年份:
    2021
  • 资助金额:
    $ 37.85万
  • 项目类别:
    Discovery Launch Supplement
Manufacturing the Next-Generation of Soft Robotics with Ultra-Efficient, Strong, Electro-Mechanical Artificial Muscles
使用超高效、强大的机电人工肌肉制造下一代软体机器人
  • 批准号:
    RGPIN-2021-02791
  • 财政年份:
    2021
  • 资助金额:
    $ 37.85万
  • 项目类别:
    Discovery Grants Program - Individual
Development of intelligent, electrically tunable optical materials by exploring nanostructures: a path towards a new generation of electro-optical devices
通过探索纳米结构开发智能电可调光学材料:通向新一代电光器件的道路
  • 批准号:
    492045-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 37.85万
  • 项目类别:
    Collaborative Research and Development Grants
Development of intelligent, electrically tunable optical materials by exploring nanostructures: a path towards a new generation of electro-optical devices
通过探索纳米结构开发智能电可调光学材料:通向新一代电光器件的道路
  • 批准号:
    492045-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 37.85万
  • 项目类别:
    Collaborative Research and Development Grants
Development of intelligent, electrically tunable optical materials by exploring nanostructures: a path towards a new generation of electro-optical devices
通过探索纳米结构开发智能电可调光学材料:通向新一代电光器件的道路
  • 批准号:
    492045-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 37.85万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了