Quantitative bone radiomics using Ultra-High Resolution CT
使用超高分辨率 CT 进行定量骨放射组学
基本信息
- 批准号:10442522
- 负责人:
- 金额:$ 46.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAmericanBiological MarkersBiological ModelsBody SizeBone DensityBone GrowthClinicalCompetenceDegenerative polyarthritisDiagnosisDiagnostic ImagingDiseaseDoseEarly DiagnosisEmerging TechnologiesFailureForteoGenerationsGeometryGoalsHealth Care CostsHigh Resolution Computed TomographyHumanImageImage AnalysisInvestigationLightMagnetic Resonance ImagingManufacturer NameMeasurementMechanicsMediatingMonitorMorbidity - disease rateNoiseOperative Surgical ProceduresOrthopedicsOsteoporosisOutcomePatientsPerformancePerioperativePharmaceutical PreparationsProcessProtocols documentationQuantitative EvaluationsReproducibilityResearchResolutionRisk AssessmentRoentgen RaysSamplingScanningStandardizationSystemTechniquesTechnologyTextureThickTrabecular Bone ScoreValidationVertebral columnX-Ray Computed Tomographybasebiomechanical testbonebone healthbone qualitycartilage degradationclinical biomarkersclinical developmentcone-beam computed tomographydetectorexperimental studyfracture riskhigh resolution imagingimaging modalityimaging systemimprovedin vivoin vivo evaluationinterestmicroCTmortalitynovelpreclinical studypreventprospectiveradiological imagingradiomicsreconstructionrisk stratificationsimulationspectrographspine bone structuresubstantia spongiosatoolultra high resolution
项目摘要
PROJECT SUMMARY / ABSTRACT
Osteoporosis (OP) and osteoarthritis (OA) cumulatively affect more than 40 million Americans. Both OP and OA
are underdiagnosed and undertreated because of the limited accuracy of existing tools for diagnosis and
treatment monitoring. The need for improved biomarkers of OP and OA spurred interest in quantitative evaluation
of texture features of cancellous bone derived from radiography, CT, and MRI. In such “bone radiomics”, image
texture provides an indirect assessment of the trabecular geometry (≤100 µm detail size) that is better suited to
the limited resolution of diagnostic imaging modalities than the direct measurements used in e.g. micro-CT. Initial
clinical validation of textural bone biomarkers showed promising performance in prediction of vertebral failure
and progression of OA. However, rigorous investigation of how the image formation process affects textural
biomarkers is essential to establish standardized protocols for imaging and analysis in bone radiomics –
especially in light of emerging technologies for high-resolution imaging. Recently, new CT scanners with ~2x
improved spatial resolution compared to conventional CT have been introduced by major manufacturers,
including the Canon Precision system that will be used in this project. This new generation of ultra-high resolution
CT (UHR CT) is capable of visualizing ~150 µm details, approaching the trabecular thickness and thus potentially
enabling a breakthrough in in-vivo evaluation of bone micorarchitecture. We hypothesize that the improved
spatial resolution of UHR CT will lead to better quantitative performance of bone radiomics than normal resolution
CT (NR CT) or x-ray absorptiometry (DXA). To establish the clinical utility of bone radiomics using UHR-CT, the
following Aims will be pursued: 1) Perform the first comprehensive assessment of the sensitivity of CT-based
texture features of bone to key components of the CT imaging chain (e.g., scan and reconstruction protocol)
using a high-fidelity CT simulator and experimental studies in bone core samples. We will establish UHR and
NR CT features that are correlated to trabecular geometry and reproducible with respect to body size and dose.
2) Demonstrate improved prediction of trabecular stiffness using UHR CT texture features. Multivariate
regression between stiffness and texture bone features investigated in Aim 1 will be performed for ~300 bone
cores using UHR CT and NR CT. We will demonstrate improved stiffness estimates with UHR CT compared to
NR CT. 3) Perform a clinical pilot of UHR CT-based texture features in longitudinal monitoring of OP treatment.
We will acquire longitudinal UHR CT and DXA of 20 spine fusion patients being treated with OP drug to optimize
their bone quality. We will demonstrate that radiomic features from UHR CT detect changes in bone quality
earlier than DXA. We will also investigate the feasibility of bone radiomics in prediction of fusion outcomes.
Successful completion of the Aims will establish quantitative UHR CT-based bone radiomics as a novel tool for
in-vivo assessment of bone health in OA and OP, with downstream reduction of patient morbidity and mortality.
项目总结/摘要
骨质疏松症(OP)和骨关节炎(OA)累积影响超过4000万美国人。OP和OA
由于现有诊断工具的准确性有限,
治疗监测。对OP和OA生物标志物的改进的需求激发了定量评估的兴趣
松质骨的纹理特征来自X线、CT和MRI。在这种“骨放射组学”中,
纹理提供了对小梁几何形状(≤100 µm细节尺寸)的间接评估,更适合于
诊断成像模态的分辨率比在例如微型CT中使用的直接测量有限。初始
纹理骨生物标志物的临床验证显示在预测椎体失效方面有前景
和OA的进展。然而,对图像形成过程如何影响纹理的严格调查
生物标志物对于建立骨放射组学成像和分析的标准化方案至关重要-
特别是在高分辨率成像的新兴技术的情况下。最近,新的CT扫描仪具有~2x
与传统CT相比改进的空间分辨率已经由主要制造商引入,
包括将用于本项目的佳能精密系统。新一代超高分辨率
CT(UHR CT)能够显示约150 µm的细节,接近小梁厚度,因此可能
从而在骨微结构的体内评估方面取得突破。我们假设,
UHR CT的空间分辨率将导致比正常分辨率更好的骨放射组学定量性能
CT(NR CT)或X线吸收测定法(DXA)。为了建立使用UHR-CT的骨放射组学的临床实用性,
将追求以下目标:1)对基于CT的敏感性进行首次全面评估
骨骼的纹理特征到CT成像链的关键组件(例如,扫描和重建协议)
使用高保真CT模拟器和骨芯样本的实验研究。我们将建立UHR,
NR CT特征与骨小梁几何形状相关,并可在体型和剂量方面重现。
2)证明使用UHR CT纹理特征改善了对骨小梁硬度的预测。多元
将对约300个骨进行目标1中研究的刚度和纹理骨特征之间的回归
使用UHR CT和NR CT的核心。我们将证明UHR CT与
NR CT。3)在OP治疗的纵向监测中执行基于UHR CT纹理特征的临床试验。
我们将获得20例接受OP药物治疗的脊柱融合患者的纵向UHR CT和DXA,以优化
他们的骨骼质量。我们将证明UHR CT的放射组学特征检测骨质的变化
比DXA更早。我们还将研究骨放射组学在预测融合结果中的可行性。
目标的成功完成将建立定量UHR CT为基础的骨放射组学作为一种新的工具,
OA和OP患者骨健康的体内评估,降低患者发病率和死亡率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wojciech Bartosz Zbijewski其他文献
Wojciech Bartosz Zbijewski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wojciech Bartosz Zbijewski', 18)}}的其他基金
Quantitative bone radiomics using Ultra-High Resolution CT
使用超高分辨率 CT 进行定量骨放射组学
- 批准号:
10211363 - 财政年份:2021
- 资助金额:
$ 46.72万 - 项目类别:
Quantitative bone radiomics using Ultra-High Resolution CT
使用超高分辨率 CT 进行定量骨放射组学
- 批准号:
10609522 - 财政年份:2021
- 资助金额:
$ 46.72万 - 项目类别:
Quantitative high resolution cone beam CT for assessment of bone and joint health
用于评估骨和关节健康的定量高分辨率锥形束 CT
- 批准号:
9342891 - 财政年份:2014
- 资助金额:
$ 46.72万 - 项目类别:
Quantitative high resolution cone beam CT for assessment of bone and joint health
用于评估骨和关节健康的定量高分辨率锥形束 CT
- 批准号:
8751463 - 财政年份:2014
- 资助金额:
$ 46.72万 - 项目类别:
Cerbral Perfusion Imaging using Cone Beam Computed Tomography
使用锥形束计算机断层扫描进行脑灌注成像
- 批准号:
7537917 - 财政年份:2008
- 资助金额:
$ 46.72万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 46.72万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 46.72万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 46.72万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 46.72万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 46.72万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 46.72万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 46.72万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 46.72万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 46.72万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 46.72万 - 项目类别:
Continuing Grant














{{item.name}}会员




