Quantitative bone radiomics using Ultra-High Resolution CT

使用超高分辨率 CT 进行定量骨放射组学

基本信息

  • 批准号:
    10211363
  • 负责人:
  • 金额:
    $ 47.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY / ABSTRACT Osteoporosis (OP) and osteoarthritis (OA) cumulatively affect more than 40 million Americans. Both OP and OA are underdiagnosed and undertreated because of the limited accuracy of existing tools for diagnosis and treatment monitoring. The need for improved biomarkers of OP and OA spurred interest in quantitative evaluation of texture features of cancellous bone derived from radiography, CT, and MRI. In such “bone radiomics”, image texture provides an indirect assessment of the trabecular geometry (≤100 µm detail size) that is better suited to the limited resolution of diagnostic imaging modalities than the direct measurements used in e.g. micro-CT. Initial clinical validation of textural bone biomarkers showed promising performance in prediction of vertebral failure and progression of OA. However, rigorous investigation of how the image formation process affects textural biomarkers is essential to establish standardized protocols for imaging and analysis in bone radiomics – especially in light of emerging technologies for high-resolution imaging. Recently, new CT scanners with ~2x improved spatial resolution compared to conventional CT have been introduced by major manufacturers, including the Canon Precision system that will be used in this project. This new generation of ultra-high resolution CT (UHR CT) is capable of visualizing ~150 µm details, approaching the trabecular thickness and thus potentially enabling a breakthrough in in-vivo evaluation of bone micorarchitecture. We hypothesize that the improved spatial resolution of UHR CT will lead to better quantitative performance of bone radiomics than normal resolution CT (NR CT) or x-ray absorptiometry (DXA). To establish the clinical utility of bone radiomics using UHR-CT, the following Aims will be pursued: 1) Perform the first comprehensive assessment of the sensitivity of CT-based texture features of bone to key components of the CT imaging chain (e.g., scan and reconstruction protocol) using a high-fidelity CT simulator and experimental studies in bone core samples. We will establish UHR and NR CT features that are correlated to trabecular geometry and reproducible with respect to body size and dose. 2) Demonstrate improved prediction of trabecular stiffness using UHR CT texture features. Multivariate regression between stiffness and texture bone features investigated in Aim 1 will be performed for ~300 bone cores using UHR CT and NR CT. We will demonstrate improved stiffness estimates with UHR CT compared to NR CT. 3) Perform a clinical pilot of UHR CT-based texture features in longitudinal monitoring of OP treatment. We will acquire longitudinal UHR CT and DXA of 20 spine fusion patients being treated with OP drug to optimize their bone quality. We will demonstrate that radiomic features from UHR CT detect changes in bone quality earlier than DXA. We will also investigate the feasibility of bone radiomics in prediction of fusion outcomes. Successful completion of the Aims will establish quantitative UHR CT-based bone radiomics as a novel tool for in-vivo assessment of bone health in OA and OP, with downstream reduction of patient morbidity and mortality.
项目摘要/摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wojciech Bartosz Zbijewski其他文献

Wojciech Bartosz Zbijewski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wojciech Bartosz Zbijewski', 18)}}的其他基金

Quantitative bone radiomics using Ultra-High Resolution CT
使用超高分辨率 CT 进行定量骨放射组学
  • 批准号:
    10442522
  • 财政年份:
    2021
  • 资助金额:
    $ 47.4万
  • 项目类别:
Quantitative bone radiomics using Ultra-High Resolution CT
使用超高分辨率 CT 进行定量骨放射组学
  • 批准号:
    10609522
  • 财政年份:
    2021
  • 资助金额:
    $ 47.4万
  • 项目类别:
Quantitative high resolution cone beam CT for assessment of bone and joint health
用于评估骨和关节健康的定量高分辨率锥形束 CT
  • 批准号:
    9342891
  • 财政年份:
    2014
  • 资助金额:
    $ 47.4万
  • 项目类别:
Quantitative high resolution cone beam CT for assessment of bone and joint health
用于评估骨和关节健康的定量高分辨率锥形束 CT
  • 批准号:
    8751463
  • 财政年份:
    2014
  • 资助金额:
    $ 47.4万
  • 项目类别:
Cerbral Perfusion Imaging using Cone Beam Computed Tomography
使用锥形束计算机断层扫描进行脑灌注成像
  • 批准号:
    7537917
  • 财政年份:
    2008
  • 资助金额:
    $ 47.4万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.4万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 47.4万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 47.4万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 47.4万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 47.4万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 47.4万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 47.4万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 47.4万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 47.4万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 47.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了