Accelerating phage evolution and tools via synthetic biology and machine learning

通过合成生物学和机器学习加速噬菌体进化和工具

基本信息

  • 批准号:
    10443537
  • 负责人:
  • 金额:
    $ 64.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-16 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Summary Phages, which are the naturally evolved predators of bacteria, may hold the key to combating bacterial pathogens, including the looming threat of multidrug resistant bacteria. Phages are viruses which while harmless to humans and have been successfully engineered as tools to separate, concentrate, and detect their bacterial hosts. Additionally, phages have been used as therapeutic agents to treat patients infected with pathogens resistant to known antibiotics. While the potential benefits of phages are numerous, certain limitations must be addressed in order to fully employ them. The central hypothesis of this proposal is that both top-down and bottom-up approaches can be utilized to design and synthesize novel phages, through a combination of synthetic biology and machine learning. This will result in phage-based tools with increased functionality and customizable host ranges. The rationale for the proposed research is that as the threat of bacterial infections including those with multi-drug resistance continues to grow, phages, which have evolved to efficiently recognize and kill bacteria, will become indispensable tools. Therefore, the ability to rapidly design and engineer new phages for biosensing and therapeutics will be a critical advantage to human health. The proposal contains three specific aims which are supported by preliminary data and cited literature. Aim 1: Site-directed conjugation for advanced phage-based biosensors and therapeutics. Under this aim, phages will be modified with alkyne-containing unnatural amino acids allowing their direct conjugation to 1) azide decorated magnetic nanoparticles, and 2) azide terminated polyethylene glycol. The modifications will allow the development of magnetic phages for bacteria separation and detection, and phages that are more effective therapeutics due to their ability to avoid a patient’s innate immune response, respectively. Aim 2: Decoding phage biorecognition elements using machine learning. In this aim, machine learning will be used to model the binding of phages and their bacterial hosts. The model will enable the prediction of host interactions as well as allow the design and synthesis of novel phage tail fibers which can target specific bacterial isolates. Aim 3: Repurposing phage biorecognition for a broader host ranges. Under the final aim, phage-binding proteins will be replaced with those known to recognize conserved regions of the bacterial LPS, resulting in a phage with a much broader host range. This approach is innovative because it uses top-down characterizations for bottom-up design and synthesis of novel phages. Traditional phage screening methods will be replaced with the rapid synthesis of phages, which are optimized for a particular bacterial isolate. Following the successful completion of the specific aims, the expected outcome is the design and synthesis of phages that can be used to target a selected group of bacteria within Enterobacteriaceae for advanced biosensing and therapeutics. A publically available computer model will allow rapid design of custom phage biorecognition elements which can be added to functionalized phages. These technologies will allow researchers to tip the scales of the co-evolutionary arms race between phage and bacteria.
总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sam R Nugen其他文献

Sam R Nugen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sam R Nugen', 18)}}的其他基金

Bioengineering Phage-based Biosensors with Genetic Specificity and High Sensitivity
具有遗传特异性和高灵敏度的生物工程噬菌体生物传感器
  • 批准号:
    10727412
  • 财政年份:
    2023
  • 资助金额:
    $ 64.32万
  • 项目类别:
Accelerating phage evolution and tools via synthetic biology and machine learning
通过合成生物学和机器学习加速噬菌体进化和工具
  • 批准号:
    10663875
  • 财政年份:
    2019
  • 资助金额:
    $ 64.32万
  • 项目类别:
Accelerating phage evolution and tools via synthetic biology and machine learning
通过合成生物学和机器学习加速噬菌体进化和工具
  • 批准号:
    10017215
  • 财政年份:
    2019
  • 资助金额:
    $ 64.32万
  • 项目类别:
Phage-Enabled Lab-on-a-Filter for Pathogen Separation, Concentration, and Detection
用于病原体分离、浓缩和检测的噬菌体实验室过滤器
  • 批准号:
    9920143
  • 财政年份:
    2018
  • 资助金额:
    $ 64.32万
  • 项目类别:
Phage-Enabled Lab-on-a-Filter for Pathogen Separation, Concentration, and Detection
用于病原体分离、浓缩和检测的噬菌体实验室过滤器
  • 批准号:
    9762099
  • 财政年份:
    2018
  • 资助金额:
    $ 64.32万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 64.32万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.32万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 64.32万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.32万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 64.32万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 64.32万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.32万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 64.32万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 64.32万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.32万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了