APE1 Cleavage Mechanisms during DNA Repair
DNA 修复过程中 APE1 切割机制
基本信息
- 批准号:10443576
- 负责人:
- 金额:$ 37.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAddressAphorismsBase Excision RepairsBindingBreastCatalysisCellsColorectalComplementComplexDNADNA DamageDNA Polymerase betaDNA RepairDNA Repair EnzymesDNA Repair PathwayDNA StructureDNA biosynthesisDNA lesionDNA-(apurinic or apyrimidinic site) lyaseDefectDevelopmentDrug CombinationsDrug DesignEXO1 geneEnvironmental ExposureEnvironmental HazardsEnzyme KineticsEnzymesExcisionExonucleaseExposure toGenetic PolymorphismGenomeGenome StabilityGenomic InstabilityGoalsHandHealthHumanKineticsLeadLightMalignant NeoplasmsMediatingMicroscopyMismatch RepairModificationMolecularMonitorMultiprotein ComplexesMutationNeutronsOvarianOxidative StressPathway interactionsPhosphodiesterase IPlayPolymerasePopulationPositioning AttributeProcessProteinsReactionReactive Oxygen SpeciesRepair ComplexRoleSiteSourceStructureSystemTechniquesTestingTimeVariantVertebral columnX-Ray Crystallographybasecancer riskcancer therapyendonucleaseexperimental studyhuman diseaseinterdisciplinary approachnovelnovel strategiesoxidative DNA damagephosphoglycolaterational designrepair enzymerepairedresponsesingle moleculetherapeutic target
项目摘要
Exposure to environmental hazards induces oxidative stress and promotes deleterious modifications to the
structure of DNA. These modifications are potentially mutagenic and can promote numerous human maladies,
including cancer. The base excision repair (BER) pathway is the cells primary defense against oxidative DNA
damage and maintains genome stability. To this point, genetic polymorphisms and defects in key BER enzymes
show up in several human populations, and are often associated with an increased cancer risk. An essential
BER enzyme is human apurinic/apyrimidinic (AP) endonuclease 1 (APE1), which is a multifunctional enzyme
that processes DNA damage during BER. Utilizing the same active site, APE1 performs both AP endonuclease
(endo) and 3' to 5' exonuclease (exo) activities. APE1 endo activity has been rigorously characterized. In
contrast, the mechanism for APE1 exo activity remains elusive, and it is unclear how the compact active site can
accommodate both an endo substrate (abasic site) and an exo substrate (3' mismatched or damaged base).
Moreover, the channeling of toxic DNA intermediates by the BER co-complex during APE1 exo activities remains
entirely unstudied, leaving a significant gap in our understanding of BER. Therefore, the objective of this proposal
is to determine the APE1 exo mechanism during repair of mismatched and damaged DNA ends. We will place
this activity in context of the larger DNA repair co-complex during BER substrate channeling. We hypothesize
the exo reaction of APE1 is dependent on unique active site contacts to open the binding pocket during
proofreading and the processing of damaged DNA ends. We additionally predict exo substrates promote DNA
substrate channeling between APE1 and DNA polymerase beta (the next enzyme in the pathway) during BER.
To test this, we propose the following aims: (1) Determine the mechanism of APE1 exo activity during BER
proofreading; (2) Determine the mechanism of APE1 catalyzed removal of 3′-PG end damage; and (3) Determine
the mechanism of BER substrate channeling during APE1 exo activity. To accomplish these aims we will utilize
time-lapse X-ray crystallography to observe catalysis at the atomic level, and pre-steady-state enzyme kinetics
to parse out the rates of important steps during catalysis. To address the mechanism of substrate channeling
during APE1 exo activity, we will use single-molecule total internal reflection microscopy (TIRFM) to observe the
assembly/disassembly of BER complexes on DNA. Small angle neutron scattering will complement the TIRFM
studies by determining a structural envelope of the BER co-complex. Using this multidisciplinary approach, we
will cast light on previously understudied APE1 DNA repair mechanisms. With this information in hand, we will
be closer to our long-term goal of providing a basis for rational drug design towards the development of more
effective chemotherapeutics and synergistic drug combinations that target proteins involved in the DNA damage
response. This approach has proven successful for proteins central to DNA repair pathways, such as PARP-1.
暴露于环境危害诱导氧化应激并促进对细胞的有害修饰。
DNA的结构。这些修饰具有潜在的致突变性,并可促进许多人类疾病,
包括癌症碱基切除修复(BER)途径是细胞对DNA氧化的主要防御途径
破坏并维持基因组稳定性。在这一点上,关键BER酶的遗传多态性和缺陷
在几个人群中出现,并且通常与癌症风险增加有关。一个基本
BER酶是人脱嘌呤/脱嘧啶(AP)内切核酸酶1(APE 1),是一种多功能酶
在BER过程中处理DNA损伤利用相同的活性位点,APE 1执行AP核酸内切酶
核酸内切酶(endo)和3 '至5'核酸外切酶(exo)活性。APE 1内切活性已被严格表征。在
相比之下,APE 1外切活性的机制仍然不清楚,也不清楚紧凑的活性位点如何能够
在一个实施方案中,所述第二碱基序列容纳内底物(无碱基位点)和外底物(3 '错配或受损碱基)。
此外,在APE 1 exo活性期间,BER共复合物对毒性DNA中间体的通道作用仍然存在
完全未经研究,在我们对BER的理解中留下了很大的空白。因此,本提案的目的
目的是确定APE 1在修复错配和受损DNA末端过程中的外切机制。我们将会下
这种活性在BER底物通道作用过程中与较大的DNA修复共复合物有关。我们假设
APE 1的exo反应依赖于独特的活性位点接触,
校正和处理受损的DNA末端。我们还预测外切底物促进DNA
BER期间APE 1和DNA聚合酶β(途径中的下一个酶)之间的底物通道。
为了验证这一点,我们提出了以下目标:(1)确定BER过程中APE 1 exo活性的机制
校正;(2)确定APE 1催化去除3 ′-PG末端损伤的机制;(3)确定
APE 1 exo活性过程中BER底物沟道的机制。为了实现这些目标,我们将利用
时间推移X射线晶体学观察在原子水平上的催化作用,以及前稳态酶动力学
解析出催化过程中重要步骤的速率。为了解决基板沟道的机制
在APE1 exo活动期间,我们将使用单分子全内反射显微镜(TIRFM)观察
BER复合物在DNA上的组装/分解。小角中子散射将补充TIRFM
通过确定BER协复合物的结构包络进行研究。通过这种多学科的方法,我们
这将有助于揭示先前未充分研究的APE 1 DNA修复机制。有了这些信息,我们将
更接近我们的长期目标,即为合理的药物设计提供基础,以开发更多
靶向参与DNA损伤的蛋白质的有效化疗剂和协同药物组合
反应这种方法已被证明对DNA修复途径的核心蛋白质(如PARP-1)是成功的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular and structural characterization of disease-associated APE1 polymorphisms.
疾病相关 APE1 多态性的分子和结构特征。
- DOI:10.1016/j.dnarep.2020.102867
- 发表时间:2020
- 期刊:
- 影响因子:3.8
- 作者:Whitaker,AmyM;Stark,WesleyJ;Flynn,TonyS;Freudenthal,BretD
- 通讯作者:Freudenthal,BretD
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bret D Freudenthal其他文献
Bret D Freudenthal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bret D Freudenthal', 18)}}的其他基金
Structural and Mechanistic Studies of DNA Repair
DNA修复的结构和机制研究
- 批准号:
9762147 - 财政年份:2018
- 资助金额:
$ 37.37万 - 项目类别:
APE1 Cleavage Mechanisms during DNA Repair
DNA 修复过程中 APE1 切割机制
- 批准号:
10202601 - 财政年份:2018
- 资助金额:
$ 37.37万 - 项目类别:
Structural and Mechanistic Studies of DNA Repair
DNA修复的结构和机制研究
- 批准号:
10622967 - 财政年份:2018
- 资助金额:
$ 37.37万 - 项目类别:
Structural and Mechanistic Studies of DNA Repair
DNA修复的结构和机制研究
- 批准号:
10247705 - 财政年份:2018
- 资助金额:
$ 37.37万 - 项目类别:
DNA Repair Strategies that Impact Genomic Stability During Oxidative Stress
氧化应激期间影响基因组稳定性的 DNA 修复策略
- 批准号:
9330157 - 财政年份:2015
- 资助金额:
$ 37.37万 - 项目类别:
DNA Repair Strategies that Impact Genomic Stability During Oxidative Stress
氧化应激期间影响基因组稳定性的 DNA 修复策略
- 批准号:
9131846 - 财政年份:2015
- 资助金额:
$ 37.37万 - 项目类别:
DNA Repair Strategies that Impact Genomic Stability During Oxidative Stress
氧化应激期间影响基因组稳定性的 DNA 修复策略
- 批准号:
9136220 - 财政年份:2015
- 资助金额:
$ 37.37万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.37万 - 项目类别:
Research Grant














{{item.name}}会员




