Dynamic Lipid and Protein Organization in Cell Membranes
细胞膜中的动态脂质和蛋白质组织
基本信息
- 批准号:10443292
- 负责人:
- 金额:$ 52.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAerobicAffectAmino Acid SequenceAmino AcidsAnaerobic BacteriaAreaBehaviorBiochemicalBiologicalCardiolipinsCationsCell divisionCell membraneCell physiologyCellsChargeChemicalsCystic FibrosisCytoplasmDefectDementiaDiabetes MellitusDiseaseEngineeringEnvironmentEnzymesEquilibriumEscherichia coliEubacteriumEventGenesGenetic Complementation TestGoalsGram-Negative BacteriaGrowthHydrophobicityIn VitroIntegral Membrane ProteinLaboratoriesLibrariesLipid BilayersLipidsMeasuresMechanicsMembraneMembrane BiologyMembrane LipidsMembrane ProteinsMembrane Structure and FunctionMethodsModelingMolecularMolecular GeneticsMutationOrganellesOrganismPathogenicityPatternPeptidesPhenotypePhosphatidylethanolaminePhosphatidylglycerolsPhospholipidsPhosphorylationPhysiologicalPlayPrionsProcessProtein DephosphorylationProtein EngineeringProteinsReagentRoleScabiesSeptal RegionSignal TransductionSystemTestingThermodynamicsTransmembrane Domaincardiolipin synthasecell growthdriving forceexperimental studyin vivoinsightinterfacialmembrane assemblymethod developmentmisfolded proteinmutantnew growthnovelprotein misfoldingprotein structure functionproteoliposomesreconstitutionresponsescaffoldtemperature sensitive mutant
项目摘要
Abstract
A fundamental objective in membrane biology is to understand and predict how protein sequences fold and orient
in a lipid bilayer. Most studies focus on the membrane protein (MP) and the membrane insertion machinery with
little consideration of how lipid environment affects transmembrane domain (TMD) organization. The long-term
goal of this proposal is to understand the role of lipid-protein interactions in the assembly, structure and function
of MPs. Using a combined molecular genetic and biochemical approach, we established that lipid dependent
TMD orientation is dynamic (i.e., can reversibly change) during and after MP assembly in vivo and is independent
of other cellular factors in vitro. We proposed the Charge Balance Rule, which includes an acitve role for lipid
environment, to explain the dynamic behavior of MPs. We developed a library of lipid mutants of Escherichia coli
in which lipid composition can be regulated during or temporally after MP membrane insertion. The physiological
significance of membrane lipid bilayer asymmetry is an understudied area. We now add to this library a set of E.
coli strains and proteoliposome systems in which membrane lipid bilayer asymmetry can be controlled to
determine the role of lipid bilayer asymmetry in MP dynamic organization. Using this set of lipid reagents and
native or engineered MPs, we propose three integrated Specific Aims: Aim 1, We will quantify in thermodynamic
terms and determine the mechanistic and structural principles underlying the molecular driving forces, as
proposed by the Charge Balance Rule, that govern dynamic TMD topology organization as a function of
membrane lipid composition and asymmetry. Aim 2, The role of CL in cell functions is not well understood. CL
transbilayer asymmetry across any biological membrane is unknown, and there is still no reliable method for
estimating its distribution across any membrane. E. coli lacking CL display several phenotypes under aerobic
and anaerobic conditions, which would seriously compromise growth in the wild. We will address the role of CL,
its transmembrane asymmetry and the three CL synthases in supporting critical cell functions, which will be
applicable to the understanding of the importance of CL and cls gene multiplicity in pathogenic Gram-negative
bacteria. Aim 3, An essential MP (FtsK) was identified by us associated with a late stage of cell division (a defect
in phosphatidylethanolamine-lacking cells) that is topologically responsive to changes in lipid composition and
phosphorylation of its extramembrane domains. We will address how changes in lipid composition/asymmetry
and phosphorylation/dephosphorylation cycles affect the function of FtsK as an example of a physiological
function potentially governed by the Charge Balance Rule. By focusing on interfacial protein-lipid interactions in
lipid bilayers with different lipid compositions and asymmetry, measuring electric forces acting on nascent MPs
during and after assembly, and characterizing physiologically important roles for CL (as we have for
phosphatidylethanolamine), we will enhance our understanding of the forces that define MP structure and
function and the role membrane lipids play in cell processes.
抽象的
膜生物学的基本目标是了解和预测蛋白质序列如何折叠和方向
在脂质双层中。大多数研究侧重于膜蛋白(MP)和带有膜插入机械
几乎没有考虑脂质环境如何影响跨膜域(TMD)组织。长期
该建议的目标是了解脂质 - 蛋白质相互作用在组装,结构和功能中的作用
国会议员。使用分子遗传和生化方法,我们确定了脂质依赖性
TMD方向是动态的(即可以在体内和之后组装后和之后的动态变化),并且是独立的
其他细胞因子体外。我们提出了收费余额规则,其中包括脂质的敏捷角色
环境,解释MPS的动态行为。我们开发了大肠杆菌的脂质突变体库
其中在MP膜插入后或时间上可以调节脂质成分。生理
膜脂质双层不对称的重要性是研究的区域。现在,我们将其添加到此库中。
大肠杆菌菌株和蛋白质脂质体系统,其中膜脂质双层不对称可以控制为
确定脂质双层不对称在MP动态组织中的作用。使用这组脂质试剂和
本地或工程MPS,我们提出了三个集成的特定目的:AIM 1,我们将在热力学中进行量化
术语并确定分子驱动力的基础机械和结构原理,如
收费余额规则提出的,管理动态TMD拓扑组织
膜脂质组成和不对称性。 AIM 2,CL在细胞功能中的作用尚不清楚。 Cl
跨任何生物膜的跨贝伊尔不对称尚不清楚,并且仍然没有可靠的方法
估计其在任何膜上的分布。缺乏CL的大肠杆菌在有氧运动下显示几种表型
和厌氧条件,这将严重损害野外的生长。我们将解决CL的角色,
它的跨膜不对称和支持关键细胞功能的三个CL合酶,这将是
适用于理解CL和CLS基因多样性在致病性革兰氏阴性阴性中的重要性
细菌。 AIM 3,与细胞分裂后期相关的我们确定了必不可少的MP(FTSK)(缺陷
在磷脂酰乙醇胺的细胞中),在拓扑上,对脂质组成的变化和
其外膜外域的磷酸化。我们将解决脂质组成/不对称的变化
和磷酸化/去磷酸化周期影响FTSK的功能作为生理的一个例子
功能可能受电荷余额规则支配。通过专注于界面蛋白脂质相互作用
具有不同脂质组成和不对称性的脂质双层,测量作用于新生MP的电力
在组装过程中和之后,并表征了CL的生理上重要的作用(如我们所具有的
磷脂酰乙醇胺),我们将增强对定义MP结构和的力的理解
功能和膜脂质在细胞过程中起着作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail V. Bogdanov其他文献
Mikhail V. Bogdanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail V. Bogdanov', 18)}}的其他基金
Dynamic Lipid and Protein Organization in Cell Membranes
细胞膜中的动态脂质和蛋白质组织
- 批准号:
10611484 - 财政年份:2017
- 资助金额:
$ 52.45万 - 项目类别:
相似国自然基金
有氧运动及HDAC4/5对骨骼肌细胞代谢酶乙酰化的影响及其在改善胰岛素抵抗过程中机制研究
- 批准号:32371186
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
从“动而中节”探讨有氧运动调节线粒体动力学影响乳酸穿梭在肝癌预防中的作用
- 批准号:82104977
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
从“动而中节”探讨有氧运动调节线粒体动力学影响乳酸穿梭在肝癌预防中的作用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有氧运动与视频游戏的联合训练对老年人记忆及海马可塑性的影响
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
CHRONO-BMAL1通路调节骨骼肌糖代谢及其影响有氧运动能力的分子机制
- 批准号:32071168
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Concurrent Aerobic Exercise and Cognitive Training to Prevent Alzheimer's in at-risk Older Adults
同时进行有氧运动和认知训练可预防高危老年人的阿尔茨海默病
- 批准号:
10696409 - 财政年份:2023
- 资助金额:
$ 52.45万 - 项目类别:
Copper Sensing in Uropathogenic Escherichia coli
尿路致病性大肠杆菌中的铜感应
- 批准号:
10604449 - 财政年份:2023
- 资助金额:
$ 52.45万 - 项目类别:
Precision Medicine in Alzheimer’s Disease: A SMART Trial of Adaptive Exercises and Their Mechanisms of Action Using AT(N) Biomarkers to Optimize Aerobic-Fitness Responses
阿尔茨海默病的精准医学:使用 AT(N) 生物标志物优化有氧健身反应的适应性运动及其作用机制的 SMART 试验
- 批准号:
10581973 - 财政年份:2023
- 资助金额:
$ 52.45万 - 项目类别:
Adapting and Implementing a Nurse Care Management Model to Care for Rural Patients with Chronic Pain
适应和实施护理管理模式来护理农村慢性疼痛患者
- 批准号:
10741606 - 财政年份:2023
- 资助金额:
$ 52.45万 - 项目类别:
Exercise facilitation of adolescent fear extinction, frontolimbic circuitry, and endocannabinoids
运动促进青少年恐惧消退、额边缘回路和内源性大麻素
- 批准号:
10648773 - 财政年份:2023
- 资助金额:
$ 52.45万 - 项目类别: