Predicting AUD development, risk and resilience phenotypes through integration of multi-modal COGA data
通过整合多模式 COGA 数据预测 AUD 发展、风险和复原力表型
基本信息
- 批准号:10446655
- 负责人:
- 金额:$ 50.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:18 year oldAddressAdultAffectAfrican AmericanAfrican American populationAgeAlcohol dependenceAlcoholsAmericanAttention deficit hyperactivity disorderBiologicalBiological FactorsBiological MarkersBrainCause of DeathCessation of lifeCharacteristicsClinicalComplexDSM-IVDataDemographic FactorsDevelopmentDiagnosisDiseaseDrug usageDrunk drivingEarly DiagnosisElectroencephalogramElectrophysiology (science)EnvironmentEnvironmental Risk FactorEuropeanEvaluationFamily StudyFemaleFunctional disorderGenderGeneticGenetic MarkersGenetic ModelsGenetic studyGoalsHealthHomeIndividualLeadLearningLiteratureMachine LearningMajor Depressive DisorderMeasuresMedical GeneticsMethodsModalityModelingParticipantPerformancePhenotypePopulationPost-Traumatic Stress DisordersPredispositionPsychiatric DiagnosisPsychiatryPublic HealthQuestionnairesResearchResearch PersonnelRiskSamplingSideSingle Nucleotide PolymorphismSubgroupSurveysSymptomsTechniquesTestingTrainingTreesUnderrepresented PopulationsUnited StatesValidationWomanWorkaddictionagedalcohol use disorderbasecohortdeep learningdemographicsdisorder controldisorder preventiondisorder riskgenetics of alcoholismgradient boostingimprovedinnovationinterestmachine learning algorithmmachine learning methodmenmultidisciplinarymultimodal datamultimodalityneurogeneticsneurophysiologypeerpersonalized diagnosticspersonalized medicinepolygenic risk scoreprecision medicineprediction algorithmpredictive modelingpsychosocialrecruitresiliencesecondary analysissexsociodemographicssoftware development
项目摘要
Project Summary
Alcohol use disorder (AUD) is a major public health challenge in the USA and the world. In the National Survey
on Drug Use and Health (2018), 14.4 million adults aged 18 and older had AUD. This included 9.2 million men
and 5.3 million women. Furthermore, in 2014, alcohol-impaired driving fatalities accounted for 9,967 deaths in
the USA. Despite its importance, not much research has been done to identify the predisposing biological
factors that may lead to the development of AUD. While predictive models have been successful in
distinguishing between individuals with AUD and healthy controls, models identifying in advance if an individual
is prone to develop AUD, as well as the biomarkers indicating a predisposition for AUD, are still unclear. To
address this, the Collaborative Study of the Genetics of Alcoholism (COGA) of European American (EA) and
African American (AA) has recruited subjects aged 8-68, who are longitudinally followed and evaluated for
AUD over 30 years. The subjects were also assessed in terms of electrophysiology (EEG), single-nucleotide
polymorphisms (SNP), psychosocial and psychiatry evaluation and demographic questionnaires. The goal of
our proposed study is to conduct secondary analyses of COGA’s rich multimodal longitudinal data to develop
predictive models that can accurately predict vulnerability to AUD before an individual actually develops the
disorder. Machine learning (ML) methods hold particular promise to address this problem. Over the last
decade, ML methods applied to complex biomedical data have generally outperformed classical regression
approaches, suggesting that multi-dimensional modeling of genetic, biological and psychosocial data may best
reflect the underlying pathophysiology of AUD. Thus, in this project, we will leverage innovative ML methods,
especially those based on deep and ensemble learning, and the rich COGA data to develop multi-modal
predictive models of vulnerability to the disorder. Furthermore, the majority of the AUD predictive modeling
work has been conducted in EA populations, necessitating increased studies among underrepresented groups,
including AA and females, so that the benefits of precision medicine can reach all populations. Therefore, we
will conduct our predictive modeling analyses in subgroups stratified by age, sex, and ancestry (AA, EA). We
will also rigorously evaluate the developed predictive models in an independent validation set, stratified based
on the same criteria. Finally, we will employ systematic interpretation strategies for the models to identify EEG,
genetic (SNP, polygenic risk scores), psychosocial, psychiatric and demographic features that contribute most
strongly to accurate AUD prediction. At the conclusion of the secondary analysis-oriented work outlined in this
proposal, we expect to have identified an accurate, generalizable multi-modal predictive model of vulnerability
to AUD, as well as identified features that are associated with this serious disorder. Our work is likely to
contribute to a deeper understanding of this major public health challenge, as well as its personalized
diagnosis and treatment.
项目摘要
酒精使用障碍(AUD)是美国和世界面临的重大公共卫生挑战。在全国调查中
关于药物使用与健康(2018年),1,440万18岁及以上的成年人患有AUD。其中包括920万名男性
以及530万女性。此外,在2014年,因酒后驾车死亡的人数为9967人。
美国。尽管它很重要,但还没有做太多的研究来确定易感的生物
可能导致澳元发展的因素。虽然预测模型在以下方面取得了成功
区分患有AUD和健康对照的个体,模型提前识别个体
容易发生AUD,以及指示AUD易感性的生物标志物仍不清楚。至
为了解决这一问题,欧洲裔美国人(EA)和美国人酒精中毒遗传学(COGA)合作研究
非裔美国人(AA)招募了8-68岁的受试者,对他们进行纵向跟踪和评估
30多年了。受试者还被评估了电生理(EEG)、单核苷酸
多态(SNP)、心理社会和精神病学评估以及人口统计学调查问卷。的目标是
我们建议的研究是对COGA丰富的多模式纵向数据进行二次分析,以开发
预测模型,可以在个人实际患上AUD之前准确预测AUD的易感性
无序。机器学习(ML)方法特别有希望解决这个问题。在过去的几年里
十年来,ML方法应用于复杂生物医学数据的性能通常优于经典回归
方法,这表明对遗传、生物和心理社会数据的多维建模可能是最好的
反映AUD的潜在病理生理学。因此,在这个项目中,我们将利用创新的ML方法,
特别是基于深度学习和集成学习的方法,以及丰富的COGA数据来开发多模式
对这种疾病易感性的预测模型。此外,大多数AUD预测建模
在EA人群中进行了研究,需要在代表性不足的群体中进行更多的研究,
包括再生障碍性贫血和女性,让精准医疗的好处可以惠及所有人群。因此,我们
将在按年龄、性别和血统(AA、EA)分层的小组中进行预测建模分析。我们
还将在独立的验证集中严格评估开发的预测模型,分层
以同样的标准。最后,我们将对模型采用系统的解释策略来识别脑电,
遗传(SNP,多基因风险评分)、心理社会、精神病学和人口统计学特征的贡献最大
强烈到准确的澳元预测。在本文件中概述的面向二次分析的工作结束时
建议,我们希望已经确定了一个准确的、可推广的脆弱性多模式预测模型
到澳元,以及与这一严重疾病相关的已识别特征。我们的工作很可能会
有助于更深入地了解这一重大公共卫生挑战及其个性化
诊断和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sivan Kinreich其他文献
Sivan Kinreich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sivan Kinreich', 18)}}的其他基金
Predicting AUD development, risk and resilience phenotypes through integration of multi-modal COGA data
通过整合多模式 COGA 数据预测 AUD 发展、风险和复原力表型
- 批准号:
10665027 - 财政年份:2022
- 资助金额:
$ 50.24万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 50.24万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 50.24万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 50.24万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 50.24万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 50.24万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 50.24万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 50.24万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 50.24万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 50.24万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 50.24万 - 项目类别:
Research Grant