Broad Bandwidth Transducers for High Resolution Information Rich IVUS

宽带宽传感器可提供高分辨率信息丰富的 IVUS

基本信息

  • 批准号:
    10447462
  • 负责人:
  • 金额:
    $ 39.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-10 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Abstract Intra-coronary imaging is a powerful clinical tool for decision making, treatment planning, and assessment of stent deployment. It is also a powerful research tool for plaque progression/regression, drug treatments, and device interventions. There are clear advantages and disadvantages of common intravascular imaging methods. Intravascular ultrasound (IVUS) provides good resolution and allows one to measure lumen narrowing, wall thickening, atheroma burden, and to a lesser extent stent deployment. Using spectral analysis of the RF signal and machine learning, our group has developed software, which was later commercialized, to automatically classify atherosclerotic tissues using IVUS images. Intravascular optical coherence tomography (IVOCT) has better resolution than IVUS, enabling visualization and analysis of stent struts, thin caps of vulnerable plaques, thrombosis, and plaque erosion. IVUS has better tissue penetration than IVOCT, enabling one to assess total plaque burden. In addition, IVUS, unlike IVOCT, does not require one to flush the blood from the vessel prior to imaging, a significant issue for patients, given the prevalence of kidney disease. These limitations suggest an unmet need for a new intravascular imaging modality with attributes of both IVUS and IVOCT. We will create a novel intravascular, high frequency, broadband, focused ultrasound system (H-IVUS), which will address clinical needs identified for IVOCT and conventional IVUS. H-IVUS will have near-IVOCT resolution to enable identification of critical small structures (e.g., thin caps and stent struts), while maintaining the ability of ultrasound to penetrate tissue and evaluate soft plaque burden. It will have immediate clinical impact by ena- bling clinicians to plan and optimize procedures that have already shown to benefit from intravascular imaging: determine true vessel size, identify stent landing zones to choose correct stent lengths, identify plaque morphol- ogies to guide debulking, detect edge dissection, determine stent malapposition, and detect thin caps. In addi- tion, the high bandwidth of H-IVUS provides both fundamental and harmonic bands, which are expected to im- prove tissue classification, as determined by us in carotid arteries. We will use broadband wavelet analysis of RF, spatial structures in images, and machine learning to determine if wideband H-IVUS can provide improved segmentation to improve recognition of the important clinical landmarks and provide superior automated plaque classification over current VH IVUS®, which uses only narrow RF-fundamental-band stationary spectral analysis. In addition, our manufacturing-friendly design should greatly reduce cost, thereby limiting this barrier to utiliza- tion. Specifically, we will develop a catheter-based H-IVUS PCB using a focused polymeric ultrasonic transducer; develop algorithms which utilize broadband RF and harmonic imaging to analyze tissue types w and rigorously compare results to conventional IVUS and IVOCT. Our research will provide numerous innovations and enable creation of a product to disrupt intracoronary imaging.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AARON J FLEISCHMAN其他文献

AARON J FLEISCHMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AARON J FLEISCHMAN', 18)}}的其他基金

Broad Bandwidth Transducers for High Resolution Information Rich IVUS
宽带宽传感器可提供高分辨率信息丰富的 IVUS
  • 批准号:
    10642851
  • 财政年份:
    2022
  • 资助金额:
    $ 39.03万
  • 项目类别:

相似海外基金

Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2019
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2018
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2017
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2016
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
  • 批准号:
    385453-2009
  • 财政年份:
    2015
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Collaborative Research and Development Grants
Algorithms to generate designs of potency experiments that use far fewer animals
生成使用更少动物的效力实验设计的算法
  • 批准号:
    8810865
  • 财政年份:
    2015
  • 资助金额:
    $ 39.03万
  • 项目类别:
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2015
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
  • 批准号:
    385453-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Collaborative Research and Development Grants
Development of population-level algorithms for modelling genomic variation and its impact on cellular function in animals and plants
开发群体水平算法来建模基因组变异及其对动植物细胞功能的影响
  • 批准号:
    FT110100972
  • 财政年份:
    2012
  • 资助金额:
    $ 39.03万
  • 项目类别:
    ARC Future Fellowships
Advanced computational algorithms for brain imaging studies of freely moving animals
用于自由活动动物脑成像研究的先进计算算法
  • 批准号:
    DP120103813
  • 财政年份:
    2012
  • 资助金额:
    $ 39.03万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了