Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
基本信息
- 批准号:RGPIN-2015-05926
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is about the development of efficient computer programs (so-called algorithms) to obtain images in 3D of the interior of small laboratory animals (mice) used in biomedical research. The technique considered here for obtaining these images is diffuse optical tomography (DOT), a non-invasive medical imaging modality whereby non-ionizing light from a laser is used to illuminate an animal at several points on its skin. The light exiting the animal after its propagation through its body is measured (detected) at several positions again on its skin. The task of algorithms is to obtain from such surface measurements data a 3D image of the interior of the animal. For DOT, this is a difficult mathematical problem whose solution may take up to several hours on modern desktop computers before an image is obtained. Furthermore, a particularity of our work is that we resort to a detection technique, so-called time-domain optical measurements, that provides for information richer data. This has the potential of improving the spatial resolution of the images obtained and making them more quantitative, but since more data must be handled with such measurements, the computing time is further increased. Exploiting such data prompts for efficient numerical techniques to reduce the computational power needed by our algorithms. This proposal is about the development of such techniques that should lead to a decrease in computing times by an estimated factor of 10 to 100. This research is important because 3D pre-clinical imaging of small animals is a key tool in biomedical research that allows studying fundamental processes involved in disease development (cancer) and treatment (drug design, therapy assessment). This ultimately has impacts on the quality of treatments that can be offered to diseased patients, thus improving their quality of life and prognostics. The research program proposed here will provide end-users of DOT with faster feedback on their protocols which is important in their daily duties. Notably, optical imaging as developed here, allows studying processes that cannot be visualized with other medical imaging modalities, thus complementing these other modalities. The proposal will allow training 4 doctoral degree students along with initiating 5 bachelor’s degree students to research.
该提案是关于开发有效的计算机程序(所谓的算法),以获得用于生物医学研究的小型实验室动物(小鼠)内部的3D图像。这里考虑的用于获得这些图像的技术是漫射光学断层扫描(DOT),这是一种非侵入性医学成像模式,其中来自激光的非电离光用于在动物皮肤上的几个点处照射动物。在其传播通过其身体之后离开动物的光再次在其皮肤上的几个位置处被测量(检测)。算法的任务是从这些表面测量数据中获得动物内部的3D图像。对于DOT来说,这是一个很难的数学问题,在获得图像之前,在现代台式计算机上可能需要几个小时才能解决这个问题。此外,我们的工作的一个特殊性是,我们诉诸于检测技术,所谓的时域光学测量,提供信息更丰富的数据。这具有提高所获得的图像的空间分辨率并使其更加定量的潜力,但是由于这种测量必须处理更多的数据,因此计算时间进一步增加。利用这些数据提示有效的数值技术,以减少我们的算法所需的计算能力。这项建议是关于发展这种技术,应导致减少计算时间的估计系数为10至100。这项研究很重要,因为小动物的3D临床前成像是生物医学研究的关键工具,可以研究疾病发展(癌症)和治疗(药物设计,治疗评估)的基本过程。这最终会影响可以向患病患者提供的治疗质量,从而改善他们的生活质量和预后。这里提出的研究计划将为DOT的最终用户提供更快的协议反馈,这在他们的日常工作中非常重要。值得注意的是,这里开发的光学成像允许研究无法用其他医学成像模式可视化的过程,从而补充这些其他模式。该方案将允许培养4名博士学位研究生,沿着启动5名学士学位研究生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BérubéLauzière, Yves其他文献
BérubéLauzière, Yves的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BérubéLauzière, Yves', 18)}}的其他基金
Radiation propagation modelling and image reconstruction for X-ray time-of-flight computed tomography
X 射线飞行时间计算机断层扫描的辐射传播建模和图像重建
- 批准号:
RGPIN-2021-03858 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Radiation propagation modelling and image reconstruction for X-ray time-of-flight computed tomography
X 射线飞行时间计算机断层扫描的辐射传播建模和图像重建
- 批准号:
RGPAS-2021-00039 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Radiation propagation modelling and image reconstruction for X-ray time-of-flight computed tomography
X 射线飞行时间计算机断层扫描的辐射传播建模和图像重建
- 批准号:
RGPIN-2021-03858 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Radiation propagation modelling and image reconstruction for X-ray time-of-flight computed tomography
X 射线飞行时间计算机断层扫描的辐射传播建模和图像重建
- 批准号:
RGPAS-2021-00039 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
QSciTech: Bridging the Gap between Quantum Science and Quantum Technologies - Training the Next Generation of Quantum Scientists, Engineers and Entrepreneurs
QSciTech:弥合量子科学和量子技术之间的差距 - 培训下一代量子科学家、工程师和企业家
- 批准号:
511602-2018 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Training Experience
QSciTech: Bridging the Gap between Quantum Science and Quantum Technologies - Training the Next Generation of Quantum Scientists, Engineers and Entrepreneurs
QSciTech:弥合量子科学和量子技术之间的差距 - 培训下一代量子科学家、工程师和企业家
- 批准号:
511602-2018 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Training Experience
QSciTech: Bridging the Gap between Quantum Science and Quantum Technologies - Training the Next Generation of Quantum Scientists, Engineers and Entrepreneurs
QSciTech:弥合量子科学和量子技术之间的差距 - 培训下一代量子科学家、工程师和企业家
- 批准号:
511602-2018 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Training Experience
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
QSciTech: Bridging the Gap between Quantum Science and Quantum Technologies - Training the Next Generation of Quantum Scientists, Engineers and Entrepreneurs
QSciTech:弥合量子科学和量子技术之间的差距 - 培训下一代量子科学家、工程师和企业家
- 批准号:
511602-2018 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Training Experience
相似国自然基金
固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
- 批准号:60973026
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Study of non-parametric reconstruction algorithms of gravitational wave for real-time detection
实时探测引力波非参数重构算法研究
- 批准号:
22KF0329 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Robust and Efficient Learning of High-Resolution Brain MRI Reconstruction from Small Referenceless Data
从小型无参考数据中稳健而高效地学习高分辨率脑 MRI 重建
- 批准号:
10584324 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Unsupervised Deep Photon-Counting Computed Tomography Reconstruction for Human Extremity Imaging
用于人体肢体成像的无监督深度光子计数计算机断层扫描重建
- 批准号:
10718303 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
BRAIN CONNECTS: Rapid and Cost‐effective Connectomics with Intelligent Image Acquisition, Reconstruction, and Querying
大脑连接:具有智能图像采集、重建和查询功能的快速且经济有效的连接组学
- 批准号:
10663654 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
CRSNS: Development of EEG/MEG Source Reconstruction with Fast Multipole Method
CRSNS:使用快速多极方法进行 EEG/MEG 源重建的开发
- 批准号:
10835137 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Machine Learning-Based Adaptation of Data Sampling and Reconstruction for Efficient Dynamic MRI
基于机器学习的数据采样和重建适应高效动态 MRI
- 批准号:
10705033 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Novel Systems Biology Methods for the Cell-type-specific Regulatory Networks Reconstruction from scRNA-seq Data
从 scRNA-seq 数据重建细胞类型特异性调控网络的新系统生物学方法
- 批准号:
10579768 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Reconstruction-free three dimensional positron emission imaging
免重建三维正电子发射成像
- 批准号:
10689205 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别: