Identifying and leveraging strategies of inherently resilient retinal neurons to treat degeneration
识别和利用固有弹性视网膜神经元的策略来治疗退化
基本信息
- 批准号:10446816
- 负责人:
- 金额:$ 39.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelAxonAxotomyBiological AssayBiosensorBlindnessBrainCaliberCell DeathCell EnergeticsCell SurvivalCellsCessation of lifeClinicalCoping SkillsDataDegenerative DisorderDevelopmentDiabetic NeuropathiesDiabetic RetinopathyDiseaseDisease ProgressionEndoplasmic ReticulumEyeFingerprintFoundationsGene ExpressionGenesGlaucomaGoalsHeterogeneityHomeostasisHumanImageIndividualInterventionMaintenanceMeasurementMeasuresMetabolicMetabolismMitochondriaModelingMusNatureNerve CrushNerve DegenerationNeuronsOptic NerveOptic Nerve GliomaOptic Nerve InjuriesOptic NeuritisOutcomePathway interactionsPatientsPharmacologyPhenotypePhysiologic Intraocular PressurePopulationPopulation HeterogeneityProductionPropertyProteinsRegulationRepressionResearchResolutionRestRetinaRetinal Ganglion CellsRoleSourceTestingTherapeutic AgentsTimeTranslatingTraumaVisionage related neurodegenerationaxon injurycell typeexperimental studyhuman diseasehuman modelimaging approachimprovedin vivoin vivo imagingknock-downlegally blindneuron lossnovelnovel strategiesnovel therapeuticsoptic nerve disorderoverexpressionpreservationpreventresilienceresponseretinal ganglion cell degenerationretinal neuronsample collectionsight restorationsurvival outcometraittreatment strategytwo-photon
项目摘要
ABSTRACT
Retinal ganglion cells (RGCs) are the sole connection between the eye and the brain. They are particularly
susceptible to degeneration, and their damage and death leads to vision loss in conditions like glaucoma, diabetic
retinopathy, optic nerve glioma, and optic neuritis. Most treatments for these diseases are not focused on
specifically rescuing RGCs, but on relieving apparent drivers of disease progression. For example, current
glaucoma treatments focus on reducing elevated intraocular pressure (IOP), but are not effective in the majority
of patients. Further, many glaucoma patients also have RGC degeneration without IOP elevations. Thus, new
treatments to preserve RGCs in degenerative diseases represent an important unmet clinical need. Although
RGC cell death leads to vision loss, RGC death in degenerative conditions is incomplete even in severely
affected patients and robust animal models. Understanding how some RGCs natively persist in degenerative
conditions can inform the development of new treatment strategies. To identify native coping strategies, we will
directly observe cellular traits of individual RGCs prior to and during the course of degeneration, focusing on
cellular homeostasis. We have established longitudinal, in vivo, 2-photon imaging of genetically encoded
biosensors in RGCs to directly observe energetic and Ca2+ homeostasis at single RGC resolution repeatedly
over a protracted period of time. This approach allows for measurements that would normally require either end
point sample collection, pooling of RGCs from multiple retinae, or both; limitations that obscure population
heterogeneity and individual cell dynamics. We will characterize baseline heterogeneity of energetic and Ca2+
homeostasis, along with dynamics following axon injury and directly relate these measurements with RGC
survival or death. Mechanisms of homeostasis are highly relevant to a range of degenerative diseases but have
yet to be thoroughly investigated in models of RGC degeneration. Our preliminary data indicate that mouse
RGCs that natively survive optic nerve crush have salient features of energetic and Ca2+ homeostasis that can
be distinguished from the RGC population as a whole prior to induction of degeneration. These results strongly
suggest that homeostatic set-points influence RGC survival outcomes in a severe degeneration model. Further,
we will conduct experiments to preserve RGCs in optic nerve crush models by manipulating these pathways to
mimic the properties of resilient RGCs using both gene overexpression or repression interventions. Doing so we
can validate which of our observations are correlative or causative. The goals of our proposal are thus to: more
thoroughly define the homeostatic fingerprint of well surviving RGCs; determine how axotomy induced
degeneration impinges on homeostasis of well-surviving versus poorly-surviving RGCs; and translate this
information into interventions that preserve RGCs that would otherwise degenerate. Taken together our
experiments will identify and validate new approaches towards protection of RGCs.
摘要
视网膜神经节细胞(RGC)是眼睛和大脑之间的唯一联系。它们特别
易变性,它们的损伤和死亡导致视力丧失,如青光眼,糖尿病
视网膜病、视神经胶质瘤和视神经炎。这些疾病的大多数治疗方法并不关注
特别是拯救RGC,但要缓解疾病进展的明显驱动因素。例如电流
青光眼治疗集中在降低升高的眼内压(IOP),但在大多数情况下无效
病人。此外,许多青光眼患者还具有RGC变性而没有IOP升高。由此可见,新
在退行性疾病中保留RGC的治疗代表了重要的未满足的临床需求。虽然
RGC细胞死亡导致视力丧失,即使在严重的退行性疾病中,RGC的死亡也是不完全的
受影响的患者和强大的动物模型。了解一些RGC如何在退行性变中天然坚持
条件可以告知新的治疗策略的发展。为了确定本地应对策略,我们将
在变性之前和过程中直接观察单个RGC的细胞特征,重点是
细胞内稳态我们已经建立了纵向,在体内,2光子成像的基因编码的
RGC中的生物传感器,以重复单个RGC分辨率直接观察能量和Ca 2+稳态
在很长一段时间内。这种方法允许通常需要两端的测量
点样本采集,合并多个视网膜的RGC,或两者兼而有之;模糊人群的局限性
异质性和个体细胞动力学。我们将描述能量和Ca 2+的基线异质性
内稳态,沿着轴突损伤后动力学,并将这些测量与RGC直接相关
生存或死亡内稳态机制与一系列退行性疾病高度相关,
在RGC变性模型中还有待于彻底研究。我们的初步数据显示,
在视神经挤压中天然存活的RGC具有能量和Ca 2+稳态的显着特征,可以
在诱导退化之前,应与研资局的整体人口区分开来。这些结果强烈
表明在严重变性模型中,稳态设定点影响RGC存活结果。此外,本发明还
我们将进行实验,通过操纵这些通路,
使用基因过表达或抑制干预来模拟弹性RGC的特性。我们这样做
可以验证我们的观察是相关的还是因果的。因此,我们建议的目标是:更多
彻底定义存活良好的RGC的稳态指纹;确定轴突切断术如何诱导
退化影响了存活良好与存活不良的RGC的稳态;并将其转化为
将信息转化为干预措施,以保护否则会退化的RGC。综合我们的
实验将确定和验证保护RGC的新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Raymond Williams其他文献
Philip Raymond Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Raymond Williams', 18)}}的其他基金
Identifying and leveraging strategies of inherently resilient retinal neurons to treat degeneration
识别和利用固有弹性视网膜神经元的策略来治疗退化
- 批准号:
10626944 - 财政年份:2022
- 资助金额:
$ 39.01万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 39.01万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 39.01万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 39.01万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 39.01万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 39.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 39.01万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 39.01万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 39.01万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 39.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 39.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




