Identifying and leveraging strategies of inherently resilient retinal neurons to treat degeneration
识别和利用固有弹性视网膜神经元的策略来治疗退化
基本信息
- 批准号:10446816
- 负责人:
- 金额:$ 39.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelAxonAxotomyBiological AssayBiosensorBlindnessBrainCaliberCell DeathCell EnergeticsCell SurvivalCellsCessation of lifeClinicalCoping SkillsDataDegenerative DisorderDevelopmentDiabetic NeuropathiesDiabetic RetinopathyDiseaseDisease ProgressionEndoplasmic ReticulumEyeFingerprintFoundationsGene ExpressionGenesGlaucomaGoalsHeterogeneityHomeostasisHumanImageIndividualInterventionMaintenanceMeasurementMeasuresMetabolicMetabolismMitochondriaModelingMusNatureNerve CrushNerve DegenerationNeuronsOptic NerveOptic Nerve GliomaOptic Nerve InjuriesOptic NeuritisOutcomePathway interactionsPatientsPharmacologyPhenotypePhysiologic Intraocular PressurePopulationPopulation HeterogeneityProductionPropertyProteinsRegulationRepressionResearchResolutionRestRetinaRetinal Ganglion CellsRoleSourceTestingTherapeutic AgentsTimeTranslatingTraumaVisionage related neurodegenerationaxon injurycell typeexperimental studyhuman diseasehuman modelimaging approachimprovedin vivoin vivo imagingknock-downlegally blindneuron lossnovelnovel strategiesnovel therapeuticsoptic nerve disorderoverexpressionpreservationpreventresilienceresponseretinal ganglion cell degenerationretinal neuronsample collectionsight restorationsurvival outcometraittreatment strategytwo-photon
项目摘要
ABSTRACT
Retinal ganglion cells (RGCs) are the sole connection between the eye and the brain. They are particularly
susceptible to degeneration, and their damage and death leads to vision loss in conditions like glaucoma, diabetic
retinopathy, optic nerve glioma, and optic neuritis. Most treatments for these diseases are not focused on
specifically rescuing RGCs, but on relieving apparent drivers of disease progression. For example, current
glaucoma treatments focus on reducing elevated intraocular pressure (IOP), but are not effective in the majority
of patients. Further, many glaucoma patients also have RGC degeneration without IOP elevations. Thus, new
treatments to preserve RGCs in degenerative diseases represent an important unmet clinical need. Although
RGC cell death leads to vision loss, RGC death in degenerative conditions is incomplete even in severely
affected patients and robust animal models. Understanding how some RGCs natively persist in degenerative
conditions can inform the development of new treatment strategies. To identify native coping strategies, we will
directly observe cellular traits of individual RGCs prior to and during the course of degeneration, focusing on
cellular homeostasis. We have established longitudinal, in vivo, 2-photon imaging of genetically encoded
biosensors in RGCs to directly observe energetic and Ca2+ homeostasis at single RGC resolution repeatedly
over a protracted period of time. This approach allows for measurements that would normally require either end
point sample collection, pooling of RGCs from multiple retinae, or both; limitations that obscure population
heterogeneity and individual cell dynamics. We will characterize baseline heterogeneity of energetic and Ca2+
homeostasis, along with dynamics following axon injury and directly relate these measurements with RGC
survival or death. Mechanisms of homeostasis are highly relevant to a range of degenerative diseases but have
yet to be thoroughly investigated in models of RGC degeneration. Our preliminary data indicate that mouse
RGCs that natively survive optic nerve crush have salient features of energetic and Ca2+ homeostasis that can
be distinguished from the RGC population as a whole prior to induction of degeneration. These results strongly
suggest that homeostatic set-points influence RGC survival outcomes in a severe degeneration model. Further,
we will conduct experiments to preserve RGCs in optic nerve crush models by manipulating these pathways to
mimic the properties of resilient RGCs using both gene overexpression or repression interventions. Doing so we
can validate which of our observations are correlative or causative. The goals of our proposal are thus to: more
thoroughly define the homeostatic fingerprint of well surviving RGCs; determine how axotomy induced
degeneration impinges on homeostasis of well-surviving versus poorly-surviving RGCs; and translate this
information into interventions that preserve RGCs that would otherwise degenerate. Taken together our
experiments will identify and validate new approaches towards protection of RGCs.
抽象的
视网膜神经节细胞(RGC)是眼睛和大脑之间的唯一联系。他们尤其是
容易受到堕落的影响,其损害和死亡会导致青光眼,糖尿病等状况的视力丧失
视网膜病变,视神经神经胶质瘤和视神经炎。这些疾病的大多数疗法都不关注
专门营救RGC,但要缓解明显的疾病进展驱动因素。例如,当前
青光眼治疗的重点是降低升高的眼内压(IOP),但在大多数方面无效
患者。此外,许多青光眼患者也有RGC变性,而没有IOP升高。因此,新的
保存退行性疾病中RGC的治疗方法代表了重要的未满足的临床需求。虽然
RGC细胞死亡导致视力丧失,即使在严重的
影响患者和健壮的动物模型。了解某些RGC在退化中如何持续存在
条件可以告知新的治疗策略的发展。为了确定本地应对策略,我们将
直接观察到变性之前和期间单个RGC的细胞性状,重点
细胞稳态。我们已经建立了基因编码的纵向,体内的2光子成像
RGC中的生物传感器直接在单个RGC分辨率下直接观察到能量和Ca2+稳态
在旷日持久的时间段内。这种方法允许进行通常需要任一端的测量
点样品收集,来自多个视网膜的RGC或两者兼而有之;掩盖人口的局限性
异质性和单个细胞动力学。我们将表征能量和CA2+的基线异质性
稳态,以及轴突损伤后的动态,并将这些测量与RGC直接相关联
生存或死亡。稳态的机制与一系列退化性疾病高度相关,但具有
然而,要在RGC变性模型中进行彻底研究。我们的初步数据表明鼠标
本地生存的视神经挤压的RGC具有能量和Ca2+稳态的显着特征
在诱导退化之前,请先将RGC种群与RGC种群区分开。这些结果强烈
表明体内平衡的设定点会影响严重的变性模型中的RGC存活结果。更远,
我们将通过操纵这些途径到
使用基因过表达或抑制干预措施模仿弹性RGC的特性。这样做
可以验证我们的哪些观察结果是相关或因果关系的。因此,我们提案的目标是:更多
彻底定义了幸存的RGC的体内平衡指纹;确定轴切开术是如何诱导的
堕落会影响良好的稳态,而不利的RGC也会影响脱颖而出;并翻译这个
信息中的干预措施,可以保留否则会退化的RGC。总结我们
实验将识别并验证保护RGC的新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Raymond Williams其他文献
Philip Raymond Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Raymond Williams', 18)}}的其他基金
Identifying and leveraging strategies of inherently resilient retinal neurons to treat degeneration
识别和利用固有弹性视网膜神经元的策略来治疗退化
- 批准号:
10626944 - 财政年份:2022
- 资助金额:
$ 39.01万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigation of UBQLN2 in neuronal dysfunction and ALS-FTD
UBQLN2 在神经元功能障碍和 ALS-FTD 中的研究
- 批准号:
10638277 - 财政年份:2023
- 资助金额:
$ 39.01万 - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 39.01万 - 项目类别:
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 39.01万 - 项目类别:
Mechanisms of NMDAR contribution to traumatic injury in retinal ganglion cells
NMDAR对视网膜神经节细胞创伤性损伤的作用机制
- 批准号:
10570666 - 财政年份:2023
- 资助金额:
$ 39.01万 - 项目类别:
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 39.01万 - 项目类别: