Identifying and leveraging strategies of inherently resilient retinal neurons to treat degeneration

识别和利用固有弹性视网膜神经元的策略来治疗退化

基本信息

  • 批准号:
    10626944
  • 负责人:
  • 金额:
    $ 38.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Retinal ganglion cells (RGCs) are the sole connection between the eye and the brain. They are particularly susceptible to degeneration, and their damage and death leads to vision loss in conditions like glaucoma, diabetic retinopathy, optic nerve glioma, and optic neuritis. Most treatments for these diseases are not focused on specifically rescuing RGCs, but on relieving apparent drivers of disease progression. For example, current glaucoma treatments focus on reducing elevated intraocular pressure (IOP), but are not effective in the majority of patients. Further, many glaucoma patients also have RGC degeneration without IOP elevations. Thus, new treatments to preserve RGCs in degenerative diseases represent an important unmet clinical need. Although RGC cell death leads to vision loss, RGC death in degenerative conditions is incomplete even in severely affected patients and robust animal models. Understanding how some RGCs natively persist in degenerative conditions can inform the development of new treatment strategies. To identify native coping strategies, we will directly observe cellular traits of individual RGCs prior to and during the course of degeneration, focusing on cellular homeostasis. We have established longitudinal, in vivo, 2-photon imaging of genetically encoded biosensors in RGCs to directly observe energetic and Ca2+ homeostasis at single RGC resolution repeatedly over a protracted period of time. This approach allows for measurements that would normally require either end point sample collection, pooling of RGCs from multiple retinae, or both; limitations that obscure population heterogeneity and individual cell dynamics. We will characterize baseline heterogeneity of energetic and Ca2+ homeostasis, along with dynamics following axon injury and directly relate these measurements with RGC survival or death. Mechanisms of homeostasis are highly relevant to a range of degenerative diseases but have yet to be thoroughly investigated in models of RGC degeneration. Our preliminary data indicate that mouse RGCs that natively survive optic nerve crush have salient features of energetic and Ca2+ homeostasis that can be distinguished from the RGC population as a whole prior to induction of degeneration. These results strongly suggest that homeostatic set-points influence RGC survival outcomes in a severe degeneration model. Further, we will conduct experiments to preserve RGCs in optic nerve crush models by manipulating these pathways to mimic the properties of resilient RGCs using both gene overexpression or repression interventions. Doing so we can validate which of our observations are correlative or causative. The goals of our proposal are thus to: more thoroughly define the homeostatic fingerprint of well surviving RGCs; determine how axotomy induced degeneration impinges on homeostasis of well-surviving versus poorly-surviving RGCs; and translate this information into interventions that preserve RGCs that would otherwise degenerate. Taken together our experiments will identify and validate new approaches towards protection of RGCs.
抽象的 视网膜神经节细胞(RGC)是眼睛和大脑之间的唯一连接。他们特别 容易退化,其损伤和死亡会导致青光眼、糖尿病等疾病的视力丧失 视网膜病变、视神经胶质瘤和视神经炎。这些疾病的大多数治疗方法并不集中于 专门拯救 RGC,但减轻疾病进展的明显驱动因素。例如,当前 青光眼治疗的重点是降低升高的眼压 (IOP),但对大多数患者无效 的患者。此外,许多青光眼患者也有 RGC 变性,但 IOP 并未升高。因此,新 在退行性疾病中保护 RGC 的治疗是一个重要的未满足的临床需求。虽然 RGC 细胞死亡会导致视力丧失,退化情况下 RGC 死亡是不完全的,即使在严重的情况下也是如此 受影响的患者和稳健的动物模型。了解一些 RGC 本身如何持续退化 条件可以为新治疗策略的制定提供信息。为了确定本地应对策略,我们将 直接观察单个 RGC 在变性之前和过程中的细胞特征,重点关注 细胞稳态。我们已经建立了基因编码的纵向体内 2 光子成像 RGC 中的生物传感器可在单一 RGC 分辨率下重复直接观察能量和 Ca2+ 稳态 在很长一段时间内。这种方法允许通常需要任一端的测量 点样本采集、从多个视网膜汇集 RGC,或两者兼而有之;模糊人口的限制 异质性和个体细胞动力学。我们将表征能量和 Ca2+ 的基线异质性 稳态以及轴突损伤后的动态,并将这些测量值与 RGC 直接相关 生存或死亡。体内平衡机制与一系列退行性疾病高度相关,但 尚未在 RGC 变性模型中进行彻底研究。我们的初步数据表明,小鼠 在视神经挤压中原生存活的 RGC 具有能量和 Ca2+ 稳态的显着特征,可以 在诱导变性之前将其与整个 RGC 群体区分开来。这些结果强烈地 表明稳态设定点会影响严重退化模型中的 RGC 生存结果。更远, 我们将进行实验,通过操纵这些通路来保存视神经挤压模型中的 RGC 使用基因过度表达或抑制干预来模拟弹性 RGC 的特性。这样做我们 可以验证我们的观察结果是相关的还是因果关系。因此,我们提案的目标是: 彻底定义存活良好的 RGC 的稳态指纹;确定轴切术是如何诱导的 退化会影响存活良好的 RGC 与存活不良的 RGC 的稳态;并翻译这个 信息投入到保护 RGC 的干预措施中,否则 RGC 就会退化。综合我们的 实验将确定并验证保护 RGC 的新方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Raymond Williams其他文献

Philip Raymond Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Raymond Williams', 18)}}的其他基金

Identifying and leveraging strategies of inherently resilient retinal neurons to treat degeneration
识别和利用固有弹性视网膜神经元的策略来治疗退化
  • 批准号:
    10446816
  • 财政年份:
    2022
  • 资助金额:
    $ 38.64万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 38.64万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 38.64万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 38.64万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 38.64万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 38.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 38.64万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 38.64万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 38.64万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 38.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 38.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了