Investigating electroencephalographic predictors of default mode network anticorrelation for personalized neurofeedback
研究个性化神经反馈的默认模式网络反相关的脑电图预测因子
基本信息
- 批准号:10447471
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2022-05-02
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffectAttentionAttention deficit hyperactivity disorderBehavioralBrainBrain regionCategoriesClinicalCommunicationComplexComputer AnalysisDataDevelopmentDevicesDiagnosticDiseaseElectrodesElectroencephalographyElectrophysiology (science)FeedbackFingerprintFrequenciesFunctional Magnetic Resonance ImagingFunctional disorderFutureGoalsGoldImpaired cognitionIndividualInterventionLeadLearningLocationMagnetic Resonance ImagingMapsMeasurementMeasuresMental DepressionMental disordersMethodsModelingMonitorNetwork-basedNeuroanatomyParticipantPatient EducationPatientsPatternPerformancePersonsPharmacotherapyProceduresProcessProtocols documentationPsychiatryPsychopathologyResearch Domain CriteriaResearch PersonnelRestSamplingScalp structureSchizophreniaSignal TransductionSystemTask PerformancesTechniquesTestingTimeValidationWorkantagonistbasebrain behaviorcognitive functioncognitive taskcohortcomputational neurosciencedata acquisitiondesigneffective therapyflexibilityfunctional magnetic resonance imaging/electroencephalographyhemodynamicsimaging studymachine learning methodneurofeedbackneurophysiologyneuropsychiatrynovelpersonalized predictionsportabilitypredictive modelingrelating to nervous systemstandard caresupervised learningtherapeutically effectivetool
项目摘要
PROJECT SUMMARY/ABSTRACT
Neuropsychiatric conditions are increasingly being understood as disorders of intrinsic, functional interactions
within and between widespread, distributed, brain networks. Given recent advances in functional Magnetic
Resonance Imaging (fMRI) data acquisition and computational analysis, it is now possible to reliably map the
functional neuroanatomy of brain networks within individuals, offering a potential avenue for identifying
personalized neurotherapeutic targets. However, gold standard treatments (e.g. pharmacotherapy) in current
psychiatric practice were not originally designed to target specific brain network interactions and lack protocols
that leverage such individual-level data. Real-time neurofeedback— whereby patients observe and learn to
regulate selected aspects of their own brain activity— is a candidate approach to personally tailor the
normalization of unhealthy communication within and between brain networks. However, to target the major
brain networks that function abnormally in neuropsychiatric conditions, neurofeedback relies on fMRI, which is
an expensive procedure involving a complex setup and patient burden. The goal of this project is to develop an
electroencephalography (EEG) “fingerprint” of fMRI network dynamics so that a neurofeedback system based
on EEG (electrodes placed on the scalp) alone can be used to precisely target interactions within and between
brain networks. Because EEG devices can be portable and offer relatively simple setup in flexible settings, our
work could enable a scalable form of network-based neurofeedback training that patients could regularly
access. Our Aim 1 is to identify an optimal, generalizable model of EEG features that are predictive of fMRI-
based default mode network (DMN) “antagonism” within individuals. We focus on this DMN antagonism
because it is a major feature that is relevant to cognitive dysfunction in psychiatric disease at a transdiagnostic
level. We will collect high-quality, simultaneous EEG-fMRI data in 24 healthy adults (>100 mins of sampling per
participant), including three conditions: (1) resting state, (2) continuous task performance, and (3) continuous
fMRI-based neurofeedback from DMN antagonism states. We will apply machine learning-based methods to
identify an optimal mapping between EEG signal components and fMRI-based DMN antagonism. Further, we
will determine how much individual-level EEG-fMRI sampling is needed to successfully predict DMN
antagonism from EEG. Our Aim 2 is to test whether EEG markers of DMN antagonism are predictive of
cognitive task performance fluctuations within individuals. As such, our findings could offer validation of the
behavioral relevance of an EEG neurofeedback system that would target DMN antagonism. If successful, our
work can lead to development of an accessible, computational psychiatry tool that can be tested in clinical
conditions in which DMN antagonism (and related cognitive function) is affected, including attention-
deficit/hyperactivity disorder, depression and schizophrenia.
项目概要/摘要
神经精神疾病越来越被理解为内在的、功能性相互作用的疾病
广泛分布的大脑网络内部和之间。鉴于功能磁学的最新进展
共振成像 (fMRI) 数据采集和计算分析,现在可以可靠地绘制
个体大脑网络的功能神经解剖学,为识别提供了潜在的途径
个性化的神经治疗目标。然而,目前的黄金标准治疗(例如药物治疗)
精神病学实践最初并不是针对特定的大脑网络交互而设计的,并且缺乏协议
利用此类个人级别的数据。实时神经反馈——患者观察并学习
调节自己大脑活动的选定方面——是个人定制大脑活动的候选方法
大脑网络内部和之间的不健康沟通的正常化。不过,为了瞄准主要
对于在神经精神疾病中功能异常的大脑网络,神经反馈依赖于功能磁共振成像(fMRI),
这是一项昂贵的手术,涉及复杂的设置和患者负担。该项目的目标是开发一个
脑电图(EEG)功能磁共振成像网络动力学的“指纹”,以便基于神经反馈系统
单独使用脑电图(放置在头皮上的电极)可以精确定位内部和之间的相互作用
大脑网络。由于脑电图设备可以是便携式的,并且在灵活的设置中提供相对简单的设置,我们的
这项工作可以实现一种可扩展的基于网络的神经反馈训练,患者可以定期进行这种训练
使用权。我们的目标 1 是确定一个最佳的、可推广的脑电图特征模型,该模型可预测 fMRI-
基于默认模式网络(DMN)的个体内部“对抗”。我们关注这种 DMN 对抗
因为它是跨诊断时与精神疾病认知功能障碍相关的一个主要特征
等级。我们将收集 24 名健康成年人的高质量同步 EEG-fMRI 数据(每个样本采样时间超过 100 分钟)
参与者),包括三个条件:(1)静息状态,(2)连续任务表现,(3)连续
来自 DMN 拮抗状态的基于功能磁共振成像的神经反馈。我们将应用基于机器学习的方法
确定 EEG 信号分量与基于 fMRI 的 DMN 拮抗之间的最佳映射。此外,我们
将确定需要多少个体级 EEG-fMRI 采样才能成功预测 DMN
脑电图的拮抗作用。我们的目标 2 是测试 DMN 拮抗的 EEG 标记是否可以预测
个体内的认知任务表现波动。因此,我们的研究结果可以验证
针对 DMN 拮抗作用的 EEG 神经反馈系统的行为相关性。如果成功的话,我们的
这项工作可以开发出一种易于使用的计算精神病学工具,可以在临床中进行测试
DMN 拮抗(和相关认知功能)受到影响的情况,包括注意力
缺陷/多动症、抑郁症和精神分裂症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Kucyi其他文献
Aaron Kucyi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Kucyi', 18)}}的其他基金
Real-time fMRI for insular cortex brain state-triggered experience sampling
岛叶皮质脑状态触发体验采样的实时功能磁共振成像
- 批准号:
10590994 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Investigating electroencephalographic predictors of default mode network anticorrelation for personalized neurofeedback
研究个性化神经反馈的默认模式网络反相关的脑电图预测因子
- 批准号:
10684544 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Investigating electroencephalographic predictors of default mode network anticorrelation for personalized neurofeedback
研究个性化神经反馈的默认模式网络反相关的脑电图预测因子
- 批准号:
10612484 - 财政年份:2022
- 资助金额:
-- - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




