Supraphysiologic Shear Stresses Associated with Cardiopulmonary Bypass are Sufficient to Activate RIKP3 Signaling
与心肺绕道相关的超生理剪切应力足以激活 RIKP3 信号传导
基本信息
- 批准号:10446535
- 负责人:
- 金额:$ 82.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-11 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:Adrenal Cortex HormonesAnimal ModelBiomechanicsBloodBlood CellsBypassCalciumCalcium SignalingCardiac Surgery proceduresCardiopulmonary BypassCell DeathCellsCellular StructuresCessation of lifeChildhoodClinicalCongenital Heart DefectsCritical PathwaysDataDrug usageExposure toFunctional disorderGene ExpressionGoalsHealth Care CostsImpairmentIn VitroInfantInflammationInflammatoryInflammatory ResponseKnowledgeLeukocytesLyticMediatingMediator of activation proteinMembraneMolecularMorbidity - disease rateMyeloid CellsNeonatalOperative Surgical ProceduresOrganOutcomePathway interactionsPatientsPatternPhenotypePhosphorylationPhosphotransferasesPhysiologicalPlasmaPlayProcessProtein-Serine-Threonine KinasesPublishingRIPK3 geneResearchRoleSTIM1 geneSignal PathwaySignal TransductionTechniquesTemperatureTestingTissuesTranslatingbasecell cortexcytokineeffectiveness evaluationexperienceexperimental studyimproved outcomein vivoinhibitorinsightmigrationmonocytemortalityneonatal patientnovelnovel strategiespalliationporcine modelpreclinical developmentreceptorrepairedresponseshear stresssmall moleculesystemic inflammatory responsetreatment strategy
项目摘要
The vast majority of pediatric open-heart surgeries require the patient to be supported by cardiopulmonary
bypass (CPB). Exposure to CPB causes systemic inflammation and resultant multi-organ dysfunction. Post-CPB
inflammation is believed to be caused by exposure of the patient’s blood cells to the plastic tubing of the CPB
circuit and unphysiological high shear stress. However, the mechanisms underlying this process are unclear.
Our long-term goal is to understand how these insults contribute to post-CPB inflammation and translate this
knowledge into novel treatment strategies. The scientific premise for this project is that Receptor-Interacting
serine/threonine-Protein Kinase 3 (RIPK3) signaling is a novel mediator of CPB associated inflammation that
can be targeted to improve outcomes for neonatal cardiac surgery patients. Data from neonatal CBP patients, a
large animal model of CPB, and in vitro experiments form the basis of our scientific premise. We recently
published that RIPK3 and necroptosis play a role in post-CPB inflammation. Our data demonstrate that RIPK3
plays a role in post-CPB inflammation. We established that supraphysiologic shear stresses present during CPB
are sufficient to activate RIPK3 signaling in vitro and in a piglet model of CPB. Mechanistically, we found that
shear stress-initiated calcium signaling pathways are critical to the activation of monocytic cells. We have
identified specific pathways that can be targeted with small molecules to reduce CPB-activation of RIPK3 with
goal of reducing systemic inflammatory response and organ dysfunction. We hypothesize that CPB-associated
shear stress activates RIPK3 mediated inflammation. The objectives of this proposal are 1) to determine how
CPB activates RIPK3 signaling, 2) elucidate how RIPK3 signaling contributes to CPB-associated
inflammation/organ dysfunction, and 3) determine if blocking RIPK3 signaling is sufficient to reduce CPB-
associated inflammation and organ dysfunction. Our approach will consist of two specific aims:
Aim 1. Determine how shear stress activates RIPK3 signaling in circulating myeloid cells.
We postulate that supraphysiologic shear stress is sufficient to activate RIPK3 signaling. We will characterize
the shear stress thresholds and molecular mechanism responsible for RIPK3 activation during CPB with a focus
on the roles that the cell cortex, calcium signaling cascade, and shear responsive kinases play in this response.
Aim 2. Demonstrate that RIPK3 signaling mediates CPB-associated inflammation and organ dysfunction.
We postulate that RIPK3 signaling is required for the inflammatory response to CPB. RIPK3 can help propagate
inflammation via necroptosis, the release of cytokines, and leukocyte migration. We will perform in vitro and in
vivo experiments to demonstrate that targeting RIPK3 signaling reduces CPB-associated inflammation.
This research is novel and significant – elucidating how CPB activates RIPK3 signaling and necroptosis could
enable a new treatment paradigm for CPB patients, improve outcomes, and reduce healthcare costs, since the
proposed signaling pathways can be targeted by small molecules in clinical use or pre-clinical development.
绝大多数小儿心脏直视手术需要患者在心肺功能支持下进行。
旁路(CPB)。暴露于CPB引起全身炎症和由此产生的多器官功能障碍。cpb后
炎症被认为是由患者的血细胞暴露于CPB的塑料管引起的
电路和非生理高剪切应力。然而,这一过程背后的机制尚不清楚。
我们的长期目标是了解这些侮辱如何导致体外循环后炎症并将其转化为现实
新的治疗策略。这个项目的科学前提是,
丝氨酸/苏氨酸-蛋白激酶3(RIPK 3)信号传导是CPB相关炎症的新介质,
可以有针对性地改善新生儿心脏手术患者的结局。新生儿CBP患者的数据,a
CPB的大型动物模型和体外实验构成了我们科学前提的基础。我们最近
发表了RIPK 3和坏死性凋亡在CPB后炎症中起作用。我们的数据表明,RIPK 3
在CPB后炎症中起作用。我们确定CPB期间存在超生理剪切应力,
足以在体外和CPB的小猪模型中激活RIPK 3信号传导。从机制上讲,我们发现,
剪切应力引发的钙信号传导途径对于单核细胞的活化是关键的。我们有
确定了可以用小分子靶向的特定途径,以减少RIPK 3的CPB激活,
目的是减少全身炎症反应和器官功能障碍。我们假设CPB相关的
剪切应力激活RIPK 3介导的炎症。本提案的目标是:(1)确定如何
CPB激活RIPK 3信号,2)阐明RIPK 3信号如何有助于CPB相关的
炎症/器官功能障碍,和3)确定阻断RIPK 3信号传导是否足以减少CPB-1。
相关的炎症和器官功能障碍。我们的方法将包括两个具体目标:
目标1。确定切应力如何激活循环髓样细胞中的RIPK 3信号传导。
我们假设超生理剪切应力足以激活RIPK 3信号。我们将描述
体外循环中RIPK 3激活的切应力阈值和分子机制,
细胞皮质、钙信号级联和剪切响应激酶在这种反应中的作用。
目标二。证明RIPK 3信号转导介导CPB相关炎症和器官功能障碍。
我们推测RIPK 3信号是CPB炎症反应所必需的。RIPK 3可以帮助传播
炎症通过坏死性凋亡、细胞因子的释放和白细胞迁移。我们将在体外和体内
体内实验证明靶向RIPK 3信号传导减少CPB相关炎症。
这项研究是新颖的和有意义的-阐明CPB如何激活RIPK 3信号传导和坏死性凋亡可以
为CPB患者提供新的治疗模式,改善结局,降低医疗成本,因为
在临床应用或临床前开发中,小分子可以靶向所提出的信号通路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VISHAL NIGAM其他文献
VISHAL NIGAM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VISHAL NIGAM', 18)}}的其他基金
Supraphysiologic Shear Stresses Associated with Cardiopulmonary Bypass are Sufficient to Activate RIKP3 Signaling
与心肺绕道相关的超生理剪切应力足以激活 RIKP3 信号传导
- 批准号:
10606640 - 财政年份:2022
- 资助金额:
$ 82.98万 - 项目类别:
A Multiscale Modeling Approach to Hypoplastic Left Heart Syndrome
左心发育不全综合征的多尺度建模方法
- 批准号:
9053027 - 财政年份:2016
- 资助金额:
$ 82.98万 - 项目类别:
A Multiscale Modeling Approach to Hypoplastic Left Heart Syndrome
左心发育不良综合征的多尺度建模方法
- 批准号:
9260047 - 财政年份:2016
- 资助金额:
$ 82.98万 - 项目类别:
A Multiscale Modeling Approach to Hypoplastic Left Heart Syndrome
左心发育不良综合征的多尺度建模方法
- 批准号:
9766412 - 财政年份:2016
- 资助金额:
$ 82.98万 - 项目类别:
Mechanisms of Notch1 in Aortic Valve Calcification
Notch1在主动脉瓣钙化中的作用机制
- 批准号:
7561331 - 财政年份:2007
- 资助金额:
$ 82.98万 - 项目类别:
Mechanisms of Notch1 in Aortic Valve Calcification
Notch1在主动脉瓣钙化中的作用机制
- 批准号:
7812206 - 财政年份:2007
- 资助金额:
$ 82.98万 - 项目类别:
Mechanisms of Notch1 in Aortic Valve Calcification
Notch1在主动脉瓣钙化中的作用机制
- 批准号:
7483691 - 财政年份:2007
- 资助金额:
$ 82.98万 - 项目类别:
Mechanisms of Notch1 in Aortic Valve Calcification
Notch1在主动脉瓣钙化中的作用机制
- 批准号:
8096600 - 财政年份:2007
- 资助金额:
$ 82.98万 - 项目类别:
Mechanisms of Notch1 in Aortic Valve Calcification
Notch1在主动脉瓣钙化中的作用机制
- 批准号:
7616412 - 财政年份:2007
- 资助金额:
$ 82.98万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 82.98万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 82.98万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 82.98万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 82.98万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 82.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 82.98万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 82.98万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 82.98万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 82.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 82.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists