A Multiscale Modeling Approach to Hypoplastic Left Heart Syndrome
左心发育不良综合征的多尺度建模方法
基本信息
- 批准号:9260047
- 负责人:
- 金额:$ 37.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-15 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelBiomechanicsBlood flowCardiacCardiac MyocytesCardiac developmentCell ProliferationCellsChildClinicalComputer SimulationCongenital AbnormalityCongenital Heart DefectsCoupledCouplesCritical PathwaysDataDefectDevelopmentDiastoleEchocardiographyElementsEmbryoEmbryonic HeartEvolutionFetusFutureGoalsGrowthGrowth and Development functionHeartHeart TransplantationHistologicHumanHypertrophyHypoplastic Left Heart SyndromeIn VitroInterventionLeftLeft ventricular structureMathematicsMechanicsMethodsMicroRNAsModelingMolecularMolecular BiologyMolecular ModelsMorbidity - disease rateMorphologyMusNewborn InfantOperative Surgical ProceduresOrganPathogenesisPathway interactionsPatientsPatternPediatric cardiologyPeriodicityPharmacological TreatmentPharmacologyPhysiologicalProcessReportingResearchRoleSignal PathwaySignal TransductionStressStretchingTestingTimeTissuesTransplantationVentricularbasebiomechanical modelcomputer frameworkexperimental studyfetalhemodynamicsimprovedin uteroin vitro testingin vivoinduced pluripotent stem cellmechanotransductionmodels and simulationmolecular modelingmortalitymulti-scale modelingmultidisciplinarynovelnovel therapeuticspalliationprediction algorithmprenatalpublic health relevanceresponsesimulationstandard of caretherapeutic target
项目摘要
DESCRIPTION (provided by applicant): Hypoplastic Left Heart Syndrome (HLHS) is a congenital defect marked by an underdeveloped left ventricle (LV) that is unable to provide adequate blood flow to the body. Currently, the standard of care for HLHS patients is surgical palliation or cardiac transplantation, both of which have serious complications. Fetal echocardiograms demonstrate that decreased LV filling during development results in a hypoplastic LV, thereby indicating a biomechanical mechanism for HLHS. Our rationale for this project is that understanding the role of biomechanical responsive pathways in the pathogenesis of HLHS will shift the current management paradigm of HLHS patients by enabling pharmacological treatment of this defect. Our overarching goals are 1) to discover novel molecular modulators that increase LV size in HLHS patients, and 2) to build and validate multi-scale computational models to evaluate the efficacy of these modulators at the cellular and whole-organ level. We hypothesize that increasing the activity of stretch-activated growth pathways will improve the growth of hypoplastic LVs in utero. This hypothesis is based on our data that stretch stimulates cardiomyocyte proliferation, growth, and ventricular growth. Furthermore, utilizing miRNA-Seq, we have identified a microRNA, miR-486, that is 1) stretch responsive in vitro/HLHS patients and 2) promotes cardiac growth in vivo. To test our hypothesis and to achieve our overarching goals, we will perform two specific aims: Aim 1. Predict and validate the effects of miR-486 treatment on mouse and human embryonic hearts developing HLHS. We postulate that miR-486 increases embryonic cardiac growth. Thus this aim will examine miR-486 role in LV growth, both in murine and human HLHS embryos. miR-486 effects on cell proliferation, size, and contractile function will also be studied in mouse and
human iPS cardiomyocytes. These in vitro data will be incorporated into a novel 3D finite element (FE) model of embryonic cardiac growth. Finally, treatment of HLHS mouse embryos with miR-486 in utero will be used to validate FE modeling simulations. Aim 2. Prioritization of candidate miRNAs for in vivo testing based upon computational modeling of the miRNAʼs potential to improve embryonic ventricular growth. We postulate that miRNA target predictions, mathematic molecular model of cardiomyocytes, and HLHS FE modeling can be coupled to test candidate stretch-responsive miRNAs for potential to increase LV size in HLHS hearts. The candidate miRNA that increases LV the most growth within simulations of mouse HLHS embryos will be tested in vivo. This miRNA will be tested in utero, to 1) examine the effects on LV growth and 2) validate the coupled model. The proposed studies using complementary in vitro (murine and human iPS cells), in vivo, and in silico methods will elucidate critical pathways
by which biomechanical stress stimulates cardiac growth. Such a unique comprehensive approach is made possible by a multidisciplinary team that incorporates expertise in pediatric cardiology, cardiac biomechanics, molecular biology, and computational modeling.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VISHAL NIGAM其他文献
VISHAL NIGAM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VISHAL NIGAM', 18)}}的其他基金
Supraphysiologic Shear Stresses Associated with Cardiopulmonary Bypass are Sufficient to Activate RIKP3 Signaling
与心肺绕道相关的超生理剪切应力足以激活 RIKP3 信号传导
- 批准号:
10606640 - 财政年份:2022
- 资助金额:
$ 37.55万 - 项目类别:
Supraphysiologic Shear Stresses Associated with Cardiopulmonary Bypass are Sufficient to Activate RIKP3 Signaling
与心肺绕道相关的超生理剪切应力足以激活 RIKP3 信号传导
- 批准号:
10446535 - 财政年份:2022
- 资助金额:
$ 37.55万 - 项目类别:
A Multiscale Modeling Approach to Hypoplastic Left Heart Syndrome
左心发育不全综合征的多尺度建模方法
- 批准号:
9053027 - 财政年份:2016
- 资助金额:
$ 37.55万 - 项目类别:
A Multiscale Modeling Approach to Hypoplastic Left Heart Syndrome
左心发育不良综合征的多尺度建模方法
- 批准号:
9766412 - 财政年份:2016
- 资助金额:
$ 37.55万 - 项目类别:
Mechanisms of Notch1 in Aortic Valve Calcification
Notch1在主动脉瓣钙化中的作用机制
- 批准号:
7812206 - 财政年份:2007
- 资助金额:
$ 37.55万 - 项目类别:
Mechanisms of Notch1 in Aortic Valve Calcification
Notch1在主动脉瓣钙化中的作用机制
- 批准号:
7561331 - 财政年份:2007
- 资助金额:
$ 37.55万 - 项目类别:
Mechanisms of Notch1 in Aortic Valve Calcification
Notch1在主动脉瓣钙化中的作用机制
- 批准号:
7483691 - 财政年份:2007
- 资助金额:
$ 37.55万 - 项目类别:
Mechanisms of Notch1 in Aortic Valve Calcification
Notch1在主动脉瓣钙化中的作用机制
- 批准号:
8096600 - 财政年份:2007
- 资助金额:
$ 37.55万 - 项目类别:
Mechanisms of Notch1 in Aortic Valve Calcification
Notch1在主动脉瓣钙化中的作用机制
- 批准号:
7616412 - 财政年份:2007
- 资助金额:
$ 37.55万 - 项目类别:
相似海外基金
CAREER: Evolutionary biomechanics and functional morphology of salamander locomotion
职业:蝾螈运动的进化生物力学和功能形态
- 批准号:
2340080 - 财政年份:2024
- 资助金额:
$ 37.55万 - 项目类别:
Continuing Grant
Cruising the whale superhighway: The evolution, biomechanics, and ecological drivers of migration in cetaceans
巡航鲸鱼高速公路:鲸目动物迁徙的进化、生物力学和生态驱动因素
- 批准号:
NE/Y000757/1 - 财政年份:2024
- 资助金额:
$ 37.55万 - 项目类别:
Research Grant
2024 Summer Biomechanics, Bioengineering, and Biotransport Conference; Lake Geneva, Wisconsin; 11-14 June 2024
2024年夏季生物力学、生物工程和生物运输会议;
- 批准号:
2413182 - 财政年份:2024
- 资助金额:
$ 37.55万 - 项目类别:
Standard Grant
Predictive Biomechanics for Modelling Gait Stability and Falls Prediction
用于步态稳定性和跌倒预测建模的预测生物力学
- 批准号:
DP240101449 - 财政年份:2024
- 资助金额:
$ 37.55万 - 项目类别:
Discovery Projects
CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
- 批准号:
2338676 - 财政年份:2024
- 资助金额:
$ 37.55万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track M: TANDEM: Tensegrity-based Assistive aND rehabilitation Exosuits to complement human bioMechanics
NSF 融合加速器,轨道 M:TANDEM:基于张拉整体的辅助和康复外装,以补充人体生物力学
- 批准号:
2344385 - 财政年份:2024
- 资助金额:
$ 37.55万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: The three-dimensional biomechanics of the grasping big toe among higher primates
博士论文研究:高等灵长类抓握大脚趾的三维生物力学
- 批准号:
2341368 - 财政年份:2024
- 资助金额:
$ 37.55万 - 项目类别:
Standard Grant
Biomechanics of the Swimming and Chemotaxis of the Leptospiraceae
钩端螺旋体科游泳和趋化性的生物力学
- 批准号:
2309442 - 财政年份:2023
- 资助金额:
$ 37.55万 - 项目类别:
Standard Grant
Conference: Gordon Research Conference on Biomechanics in Vascular Biology and Disease; South Hadley, Massachusetts; 6-11 August 2023
会议:戈登血管生物学和疾病生物力学研究会议;
- 批准号:
2316830 - 财政年份:2023
- 资助金额:
$ 37.55万 - 项目类别:
Standard Grant
Discovering the Biomechanics of Filamentous Fungi and their Hyphae
发现丝状真菌及其菌丝的生物力学
- 批准号:
2233973 - 财政年份:2023
- 资助金额:
$ 37.55万 - 项目类别:
Standard Grant














{{item.name}}会员




