Distributed Neural Activity Patterns Underlying Practice-Based Learning
基于实践的学习的分布式神经活动模式
基本信息
- 批准号:10447345
- 负责人:
- 金额:$ 11.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AnimalsAnxietyAreaAssociation LearningBRAIN initiativeBasal GangliaBehaviorBehavioral ParadigmBrainCalciumCellsColorCuesDataDetectionElectrophysiology (science)EnvironmentFeedbackFoodForelimbGoalsImageLabelLearningLinkMeasuresMemoryMethodsMicroscopeModelingMotorMusNeuronsOutcomeOutputPathway interactionsPatternPersonsPhasePopulationPost-Traumatic Stress DisordersPostdoctoral FellowProcessPsychological reinforcementReporterRetinaSensoryShapesShort-Term MemorySmell PerceptionSmokingSynapsesSynaptic plasticitySystemTechniquesTestingUpdateVisualVisual CortexVisual PathwaysWorkaddictionautism spectrum disorderbasecigarette smokecognitive functioncognitive processexperienceexperimental studyfluorophorein vivoin vivo two-photon imaginginnovationinsightlearned behaviorloss of functionmotor behaviormotor controlnicotine rewardoptogeneticsrecruitrelating to nervous systemresponsesuperior colliculus Corpora quadrigeminasupervised learningtooltwo-photon
项目摘要
PROJECT SUMMARY / ABSTRACT
To survive, animals must learn appropriate associations between sensory cues and motor actions through a
process of trial and error. We expect that this learning will strengthen the synaptic connections between
neurons representing the sensory cue and neurons initiating the motor action. The strengthened synapses may
be direct synaptic connections between these neuronal populations or via systems intermediate between these
neurons, i.e., a “plastic brain circuit” or “pathway.” Synaptic plasticity has been observed in many different brain
areas, and the mechanisms are moderately well understood. However, we have struggled to identify which
plastic brain circuit underlies, specifically, the sensory cue-to-motor action association that is learned through
the process of trial and error. This is due, in part, to the fact that many brain areas undergo plastic changes
during learning, as the experience of learning recruits a variety of different cognitive processes, including
sensory detection, motor control, feedback, working memory and reinforcement learning -- cognitive processes
that all engage different brain areas and distributed networks. During my postdoc, I developed an approach to
assign these cognitive functions to different brain circuits for a case of trial and error learning in mice. The
approach involved an innovative behavior paradigm and optogenetic tools that are spatially and temporally
precise. Mice learned to associate the optogenetic activation of visual cortex (cue) with a forelimb reach to
grab a food pellet (motor action). As a result of my postdoc work, I now know which neurons in the brain
encode this cue and which are required to initiate this motor action. Therefore I am now equipped to identify
the plastic brain circuit underlying the learned association between this cue and this action. Here I propose to
study the brain circuit between the cue-encoding neurons and the neurons necessary to initiate the motor
action, in vivo while mice learn the cue-action association. I will study the flow of neural activity from the cue-
encoding neurons in the visual cortex to the neurons in the superior colliculus that are necessary to initiate the
motor action. In Aim 1, I will identify changes in the cued activity in visual cortex over learning. In Aim 2, I will
determine how activity in the superior colliculus changes over learning. In Aim 3, I will determine whether the
output of this pathway is sufficient to trigger the motor action after learning. Hence this work speaks directly to
a key goal of the Brain Initiative, to “demonstrate causal links between brain activity and behavior.” I will learn
in vivo two-photon imaging for Aim 1 under the guidance of Dr. Sabatini, an expert at this technique. Aims 2
and 3 will be conducted in the independent phase using in vivo electrophysiology, a technique with which I
have extensive experience. These experiments will help to identify a pathway from visual cortex to superior
colliculus that stores a learned, associative memory. Finding the neural basis of learned, sensory cue-motor
action associations will be essential to treat specific harmful associations, such as occur in PTSD, OCD,
autism and anxiety, without generally disrupting sensory or motor behavior.
项目总结/摘要
为了生存,动物必须通过一种特殊的方式来学习感觉线索和运动动作之间的适当联系。
试错的过程我们希望这种学习能够加强大脑中
代表感觉线索的神经元和启动运动动作的神经元。强化的突触可能
可以是这些神经元群体之间的直接突触连接,或者经由这些神经元群体之间的中间系统,
神经元,即,一个“可塑性大脑回路”或“通路”。突触可塑性在许多不同的大脑中被观察到
区域,并且机制被适度地理解。然而,我们一直在努力确定
特别是,可塑性脑回路是通过以下方式学习的感觉线索-运动动作关联的基础:
反复试验的过程这部分是由于许多大脑区域经历了可塑性变化
在学习过程中,由于学习的经验招募了各种不同的认知过程,包括
感觉检测、运动控制、反馈、工作记忆和强化学习--认知过程
它们都涉及不同的大脑区域和分布式网络。在我的博士后期间,我开发了一种方法,
将这些认知功能分配给不同的大脑回路,以进行小鼠的试错学习。的
方法涉及一种创新的行为范式和光遗传学工具,
准确小鼠学会了将视觉皮层的光遗传学激活(线索)与前肢接触联系起来,
抓食物颗粒(运动动作)。作为我博士后工作的结果,我现在知道大脑中的哪些神经元
编码这个线索,并需要启动这个运动动作。因此我现在可以确定
可塑性的大脑回路,是这个线索和这个动作之间的习得性联系的基础。在此,我提议
研究线索编码神经元和启动运动神经元之间的大脑回路
动作,而小鼠在体内学习线索-动作关联。我会研究线索的神经活动流程-
视觉皮层中的编码神经元到上级丘中的神经元,这些神经元是启动
运动动作在目标1中,我将确定学习过程中视觉皮层线索活动的变化。在目标2中,我将
确定上级丘的活动在学习过程中的变化。在目标3中,我将确定
该通路的输出足以在学习之后触发运动动作。因此,这项工作直接谈到
大脑倡议的一个关键目标是“证明大脑活动和行为之间的因果关系”。我会学
在该技术专家Sabatini博士的指导下,对Aim 1进行了体内双光子成像。目标2
和3将在独立阶段使用体内电生理学进行,
经验丰富。这些实验将有助于确定从视觉皮层到上级的通路
储存习得的联想记忆的丘。寻找习得的感觉线索运动的神经基础
行动协会将是必不可少的,以治疗特定的有害协会,如发生在创伤后应激障碍,强迫症,
自闭症和焦虑症,而一般不会破坏感觉或运动行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kimberly Reinhold其他文献
Kimberly Reinhold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kimberly Reinhold', 18)}}的其他基金
Distributed Neural Activity Patterns Underlying Practice-Based Learning
基于实践的学习的分布式神经活动模式
- 批准号:
10592377 - 财政年份:2022
- 资助金额:
$ 11.74万 - 项目类别:
相似海外基金
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Fellowship
Clinitouch-360: A digital health platform enabling robust end-to-end care of patients in Primary Care with depression and anxiety
Clinitouch-360:数字健康平台,可为初级保健中的抑郁和焦虑患者提供强大的端到端护理
- 批准号:
10098274 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Collaborative R&D
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Healthy Young Minds: co-producing a nature-based intervention with rural High School students to promote mental well-being and reduce anxiety
健康的年轻心灵:与农村高中生共同开展基于自然的干预措施,以促进心理健康并减少焦虑
- 批准号:
MR/Z503599/1 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Research Grant
Visual analysis system to detect and predict the signs of anxiety in healthcare
用于检测和预测医疗保健中焦虑迹象的视觉分析系统
- 批准号:
2902083 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Studentship
Using generative AI combined with immersive technology to treat anxiety disorders
利用生成式人工智能结合沉浸式技术治疗焦虑症
- 批准号:
10109165 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Launchpad
"Flashforward" imagery and anxiety in young adults: Risk mechanisms and intervention development
年轻人的“闪现”意象和焦虑:风险机制和干预措施的发展
- 批准号:
MR/Y009460/1 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Fellowship
How parents manage climate anxiety: coping and hoping for the whole family
父母如何应对气候焦虑:全家人的应对和希望
- 批准号:
DP230101928 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Discovery Projects
An innovative biofeedback enhanced adaptive extended reality (XR) device to reduce perinatal pain and anxiety during and after childbirth
一种创新的生物反馈增强型自适应扩展现实 (XR) 设备,可减少分娩期间和分娩后的围产期疼痛和焦虑
- 批准号:
10097862 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Collaborative R&D
Application name Phase Space - VR hypnotherapy as early intervention for anxiety in students and young people
应用程序名称 Phase Space - VR 催眠疗法作为学生和年轻人焦虑的早期干预
- 批准号:
10055011 - 财政年份:2023
- 资助金额:
$ 11.74万 - 项目类别:
Collaborative R&D