BioGRID: An open resource for biological interactions and network analysis
BioGRID:生物相互作用和网络分析的开放资源
基本信息
- 批准号:10447207
- 负责人:
- 金额:$ 93.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAllelesAnimal ModelArchitectureArchivesAreaBackBehaviorBindingBiologicalBiological ProcessBiomedical ResearchCOVID-19CRISPR screenCellsChemical AgentsChemicalsClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsCollectionCommunitiesComplexComputer softwareDataData SetDatabasesDevelopmentDisciplineDiseaseDrug InteractionsEngineeringFundingFutureGene ProteinsGenerationsGenesGeneticGenomeHealthHumanHuman DevelopmentInternationalIntuitionKnowledgeLiteratureMalignant NeoplasmsMapsMethodsMissionMolecularOrganismOrthologous GenePathway AnalysisPhenotypePost-Translational Protein ProcessingProcessPropertyProtein Structure InitiativeProteinsProteomePublicationsRecordsResearchResearch PersonnelResourcesServicesSoftware ToolsSourceSystemTechnologyTissuesTranslatingTranslational ResearchUbiquitinUnited States National Institutes of HealthVisualizationbasebiological systemsdata pipelinedata toolsexperimental studyfunctional genomicsfundamental researchgene functiongenome-widehuman diseaseimprovedinterestknowledge graphlarge datasetsmodel organisms databasesmulticatalytic endopeptidase complexnew therapeutic targetnovelopen sourcepathogenprotein complexprotein functionrepositorysoftware developmentstatisticstechnological innovationtext searchingtoolweb site
项目摘要
Complex physical and genetic interaction networks determine the properties of all biological systems and
underlie human development, health and disease. Decades of biological experiments have identified myriad
molecular processes that underpin specific biological processes, described in the primary biomedical literature.
More recent technological innovations combined with complete genome sequence information have led to the
development of a wide variety high-throughput (HTP) methods to generate physical and genetic interaction
data on an unprecedented scale. Because human interaction networks are often directly analogous to
networks in more tractable model organisms, it is essential that the hundreds of thousands of biological
interactions discovered across the major model organisms, as well as humans, are archived in a well-
annotated manner that provides a means for rigorous analysis and computation. To capture, integrate, and
interrogate this wealth of data from both the literature and HTP datasets, we developed the BioGRID database
as an open repository for physical and genetic interactions (www.thebiogrid.org). BioGRID contains over
2,000,000 total interactions from 75,760 publications. In 2020, BioGRID averaged 151,735 page views, 19,407
unique visitors and 7,537 file downloads per month. Our recently released Open Repository for CRISPR
Screens (ORCS), averages 8,725 page views, 1,646 unique visitors, and 268 downloads per month. In
addition, the extensive BioGRID data compendium is widely disseminated by many partner databases, meta-
databases, and software tools. Here, we propose to markedly enhance the data content, the database
architecture, and the user interface of BioGRID. We will expand the amount and types of data available
through BioGRID, with a particular focus on translating knowledge from model organism networks to humans
using ortholog mapping and a novel framework for mapping phenotypes and diseases across species. We will
significantly expand CRISPR-based genetic interactions, chemical and drug interactions, and post-translational
modifications, which we will integrate with our core physical and genetic interactions and organize around
focused curation efforts around particular biological themes. Use of text-mining algorithms and AI methods will
be extended to enhance curation rates and coverage of the proteome. User access to the large datasets in
BioGRID will be facilitated by data-rich interfaces, user-defined search and display parameters, and multiple
methods of visualization. All software will continue to be open source and engineered toward compatibility and
will be complementary with other database and software development efforts. The BioGRID will provide
interaction data and software tools to model organism databases and other interested parties without
restriction. The BioGRID resource will enable the biomedical research community to access validated
biological interaction datasets across model organisms and humans for hypothesis generation and network
analysis, and thereby further the general mission of the NIH.
复杂的物理和遗传相互作用网络决定了所有生物系统和
是人类发展、健康和疾病的基础。几十年的生物实验已经确认了无数
在主要的生物医学文献中描述的支撑特定生物过程的分子过程。
更新的技术创新与完整的基因组序列信息相结合,导致了
开发多种高通量(HTP)方法以产生物理和遗传互作
史无前例的数据。因为人类互动网络通常直接类似于
在更易驯服的生物模型网络中,至关重要的是数十万生物
在主要模式生物中发现的相互作用,以及人类,都被保存在一口井中-
带注释的方式,提供了严格分析和计算的方法。捕获、集成和
在询问文献和HTP数据集的丰富数据后,我们开发了BioGRID数据库
作为物理和遗传相互作用的开放储存库(www.thebiogrid.org)。BioGRID包含超过
来自75,760个出版物的总共2,000,000个互动。2020年,BioGRID的平均页面浏览量为151,735次,19,407次
每月有独立访问者和7537次文件下载。我们最近发布的用于CRISPR的开放存储库
屏幕(兽人),平均8,725个页面浏览量,1,646个独立访问者,每月268次下载。在……里面
此外,内容广泛的BioGRID数据概要由许多合作伙伴数据库广泛传播,Meta-
数据库和软件工具。在这里,我们建议显著增强数据内容,数据库
架构,以及BioGRID的用户界面。我们将扩大可用数据的数量和类型
通过BioGRID,特别关注将知识从模型生物体网络转化为人类
使用同源基因作图和一种新的框架来绘制跨物种的表型和疾病。我们会
显著扩展基于CRISPR的遗传交互、化学和药物交互以及翻译后
修改,我们将与我们的核心物理和遗传交互作用相结合,并围绕
围绕特定的生物学主题开展重点策划工作。使用文本挖掘算法和人工智能方法将
扩大范围以提高蛋白质组的精确率和覆盖率。用户访问中的大型数据集
BioGRID将通过数据丰富的界面、用户定义的搜索和显示参数以及
可视化的方法。所有软件将继续是开源的,并将朝着兼容性和
将与其他数据库和软件开发工作相辅相成。BioGRID将提供
用于模拟生物体数据库和其他相关方的交互数据和软件工具
限制。BioGRID资源将使生物医学研究社区能够访问经过验证的
用于假设生成和网络的跨模型生物和人类的生物相互作用数据集
分析,从而推动国家卫生研究院的总体使命。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KARA DOLINSKI其他文献
KARA DOLINSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KARA DOLINSKI', 18)}}的其他基金
BioGRID: An open resource for biological interactions and network analysis
BioGRID:生物相互作用和网络分析的开放资源
- 批准号:
10819019 - 财政年份:2023
- 资助金额:
$ 93.99万 - 项目类别:
Systematic data curation and integration to link models of human disease
系统数据管理和整合以链接人类疾病模型
- 批准号:
8332357 - 财政年份:2011
- 资助金额:
$ 93.99万 - 项目类别:
Systematic data curation and integration to link models of human disease
系统数据管理和整合以链接人类疾病模型
- 批准号:
8513434 - 财政年份:2011
- 资助金额:
$ 93.99万 - 项目类别:
Systematic data curation and integration to link models of human disease
系统数据管理和整合以链接人类疾病模型
- 批准号:
8215398 - 财政年份:2011
- 资助金额:
$ 93.99万 - 项目类别:
Systematic data curation and integration to link models of human disease
系统数据管理和整合以链接人类疾病模型
- 批准号:
8705064 - 财政年份:2011
- 资助金额:
$ 93.99万 - 项目类别:
BioGRID: An open resource for biological interactions and network analysis
BioGRID:生物相互作用和网络分析的开放资源
- 批准号:
10299336 - 财政年份:2007
- 资助金额:
$ 93.99万 - 项目类别:
BioGRID: An open resource for biological interactions and network analysis
BioGRID:生物相互作用和网络分析的开放资源
- 批准号:
10650906 - 财政年份:2007
- 资助金额:
$ 93.99万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 93.99万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 93.99万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 93.99万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 93.99万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 93.99万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 93.99万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 93.99万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 93.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 93.99万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 93.99万 - 项目类别: