Enhancing the efficacy of Radiation Therapy for brainstem glioma by targeting ATM
通过靶向 ATM 提高脑干胶质瘤放射治疗的疗效
基本信息
- 批准号:10448205
- 负责人:
- 金额:$ 21.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAtaxiaBrainBrain NeoplasmsBrain StemBrain Stem GliomaCellsCentral Nervous System NeoplasmsCessation of lifeChildChildhood Brain NeoplasmClassificationClinical TrialsClinical Trials DesignCombined Modality TherapyDNA DamageDataDiffuse intrinsic pontine gliomaEnterobacteria phage P1 Cre recombinaseEtiologyFutureGeneticGenetically Engineered MouseGenomicsGliomaGoalsH3 K27M mutationHistonesImmuneImmune responseImmune systemImmunocompetentImmunologicsImmunotherapeutic agentImmunotherapyInnate Immune ResponseInterferon Type IInterferonsInvestigationIonizing radiationLeadLoxP-flanked alleleMapsMediatingModelingMolecularMusMutateMutationNeurologic SymptomsOncogenesPathway interactionsPatientsPharmacologyPhenotypePopulationProcessProtein-Serine-Threonine KinasesRadiation ToleranceRadiation therapyRadiosensitizationResearch PersonnelResolutionRetroviridaeSignal PathwaySignal TransductionSystemTestingTherapeuticTimeTissuesTreatment-related toxicityWorkWorld Health Organizationcell injuryclinical investigationdesigndiffuse midline gliomadriver mutationds-DNAeffective therapyepigenetic therapyexperimental studyimprovedin vivoinhibitormouse modelneoplastic cellnerve stem cellnovelnovel therapeutic interventionpre-clinicalprogenitorradiation resistancerational designrecruitreduce symptomsresponsesensortreatment strategytumortumor immunologytumor microenvironmenttumor progression
项目摘要
Enhancing the efficacy of radiation therapy for brainstem glioma by targeting ATM
Project Summary/Abstract
Brainstem gliomas are devastating pediatric brain tumors. Brainstem gliomas include “diffuse midline gliomas
with H3K27M mutation” in the 2016 World Health Organization Classification of Tumors of the CNS, and
includie tumors previously referred to as “diffuse intrinsic pontine gliomas” or DIPG. Brainstem gliomas are
uniformly lethal to the patients. Radiation therapy is thought to be the only effective treatment for these
tumors, providing temporary relief from symptoms and from tumor progression. However, brainstem gliomas
inevitably progress after radiation therapy and result in death of the patient resulting in a median survival of
less than one year. New strategies are needed to improve the efficacy of radiation therapy to improve patient
survival. One promising investigational therapeutic strategy is to radiosensitize tumors by inactivating the
serine/threonine kinase Ataxia Telangiactasia Mutated (ATM). ATM is the master sensor for DNA damage,
and orchestrates the DNA damage response after cells are damaged by ionizing radiation or other DNA
damaging agents. ATM inactivation dramatically radiosensitizes a genetically engineered mouse model of
brainstem glioma. When ATM is inactivated in the tumor cells of our mouse model of brainstem glioma,
radiation therapy is particularly effective and extends median overall survival of the mice by approximately
threefold compared to mice bearing tumors with intact ATM. However, the specific cell populations that are
radiosensitized by ATM inactivation, and the mechanisms by which ATM inactivation radiosensitizes brainstem
gliomas, is unknown. A deeper understanding of the molecular mechansisms by which ATM inactivation can
radiosensitize brainstem gliomas is needed to enable the rational design of combination therapies that
combine ATM inhibition, radiation therapy, and other novel epigenetic and immunologic therapies to maximize
survival of patients with brainstem gliomas. Here, I will test the hypothesis that ATM inactivation specifically
radiosensitizes a population of progenitor-like tumor cells in our genetically engineered mouse model of
brainstem glioma. In parallel with this work, I will dissect type I interferon signaling pathways that are
contribute to radiosensitivity when ATM is inactivated. These experiments will map the tumor
microenvironment of a mouse model of brainstem glioma at single cell resolution for the first time. They will
also credential a genetically-engineered mouse model of brainstem glioma with an intact immune system for
preclinical investigations of immunotherapeutic approaches. Additionally, the proposed work will provide me
with critical expertise in genetically engineered mouse models and in immunologic investigations that will help
me transition to a productive independent investigator.
靶向ATM提高脑干胶质瘤放射治疗的疗效
项目总结/摘要
脑干神经胶质瘤是一种毁灭性的小儿脑肿瘤。脑干胶质瘤包括“弥漫性中线胶质瘤
2016年世界卫生组织CNS肿瘤分类中的“H3 K27 M突变”,
包括以前称为“弥漫性内在脑桥胶质瘤”或DIPG的肿瘤。脑干神经胶质瘤是
对病人都是致命的放射治疗被认为是唯一有效的治疗这些
肿瘤,提供症状和肿瘤进展的暂时缓解。然而,脑干神经胶质瘤
放射治疗后不可避免地进展,并导致患者死亡,导致中位生存期为
不到一年需要新的策略来提高放射治疗的疗效,以改善患者的预后。
生存一种有希望的研究性治疗策略是通过灭活肿瘤细胞来使肿瘤放射增敏。
丝氨酸/苏氨酸激酶共济失调毛细血管扩张突变(ATM)。ATM是DNA损伤的主要传感器,
并在细胞被电离辐射或其他DNA损伤后协调DNA损伤反应
破坏剂。ATM失活显著地使一种遗传工程小鼠模型放射增敏,
脑干神经胶质瘤当ATM在我们的脑干胶质瘤小鼠模型的肿瘤细胞中失活时,
放射治疗特别有效,
是携带完整ATM肿瘤的小鼠的三倍。然而,特定的细胞群,
ATM失活的放射增敏作用,以及ATM失活使脑干放射增敏的机制
神经胶质瘤,未知。更深入地了解ATM失活的分子机制,
需要放射增敏脑干神经胶质瘤以使得能够合理设计联合治疗,
联合收割机ATM抑制、放射治疗和其他新的表观遗传和免疫治疗,
脑干胶质瘤患者的生存率。在这里,我将测试ATM失活的假设,
在我们的遗传工程小鼠模型中,
脑干神经胶质瘤在这项工作的同时,我将剖析I型干扰素信号通路,
当ATM失活时,会增加辐射敏感性。这些实验将绘制出肿瘤
这是第一次在单细胞分辨率下观察脑干胶质瘤小鼠模型的微环境。他们将
还证明了具有完整免疫系统的脑干胶质瘤基因工程小鼠模型,
免疫学方法的临床前研究。此外,拟议的工作将为我提供
在基因工程小鼠模型和免疫学研究方面具有重要的专业知识,
让我成为一名卓有成效的独立调查员
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zachary Reitman其他文献
Zachary Reitman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zachary Reitman', 18)}}的其他基金
Enhancing the efficacy of Radiation Therapy for brainstem glioma by targeting ATM
通过靶向 ATM 提高脑干胶质瘤放射治疗的疗效
- 批准号:
10674851 - 财政年份:2022
- 资助金额:
$ 21.35万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 21.35万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 21.35万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 21.35万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 21.35万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 21.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 21.35万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 21.35万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 21.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 21.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 21.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)