Characterization of Gastric Evoked Potentials
胃诱发电位的表征
基本信息
- 批准号:10451224
- 负责人:
- 金额:$ 23.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AreaBase of the BrainBrainCerebral cortexCharacteristicsChronic stressClinicalClinical ResearchClinical TrialsCouplingCutaneousDataDevelopmentDiagnosisDiagnosticElectric StimulationElectrodesElectrophysiology (science)Evoked PotentialsFastingFoundationsFrequenciesFutureGastrointestinal tract structureGenerationsHumanLeadLeftLinkLocationMeasuresMethodsMonitorMood DisordersMotorMotor ActivityMotor CortexMotor Evoked PotentialsMovementMuscleNeural PathwaysNeuronsOutputParkinson DiseasePathway interactionsPeripheralPhasePhysiologic pulsePhysiologyPilot ProjectsReproducibilityRodent ControlRoleSensoryShapesSignal TransductionSiteSkeletal MuscleSmooth MuscleSpinal CordStandardizationStomachStrokeSystemSystems DevelopmentTechniquesTherapeuticTrainingTranscranial magnetic stimulationVisceralWaterWorkawakebasecell motilityclinical applicationdiagnostic tooleffective therapyexperimental studygastrointestinal systemhuman subjectinsightmotility disordermotor controlmotor disordermultiple sclerosis patientneural circuitneuroregulationnonhuman primatenoninvasive brain stimulationnovelrelating to nervous systemrepetitive transcranial magnetic stimulationresearch and developmentresponsestomach motilitystress disordertool
项目摘要
Project Summary: Motor evoked potentials (MEPs) elicited via non-invasive electrical stimulation of the
human brain are the foundational basis for investigating the neural circuits that link cortical output to the spinal
cord and muscles. Transcranial magnetic stimulation (TMS) methods have allowed the study of the
organization and plasticity of motor control systems by monitoring MEPs in awake human subjects, with
insights leading to myriad clinical applications for assessing and treating motor dysfunction. In stark contrast to
MEPs from peripheral skeletal muscle, there is no comparable, objective measure of central neural influences
on the smooth muscles of the gastrointestinal tract. This fundamental barrier has hindered progress in
neurogastroenterology by limiting the ability to study the organization and plasticity of cortical influences on the
neural control of the GI system in awake human subjects. To overcome this barrier, we have recently
developed a direct electrophysiological readout of a neural circuit linking the cortex to the stomach that we call
gastric evoked potentials (GEPs). GEPs are generated by coupling TMS with cutaneous
electrogastrography (EGG), which provides a continual electrophysiological readout of gastric smooth muscle
activity. Our pilot studies demonstrated distinct GEP signals resulting from TMS stimulation of the primary
motor cortex (M1) in human subjects. Analogous to the fundamental role TMS-elicited MEPs have had in
guiding the exploration of the neural control of movement, TMS-elicited GEPs will guide the exploration of the
neural control of GI movement (i.e. `gut motility'). In this project, we seek to determine and standardize how
best to record GEPs, to optimize the TMS parameters and conditions necessary to evoke GEPs, and to identify
the location of cortical sites that most readily generate GEPs (`GEP hotspots') (Aim 1). We then will assess
whether various modes of repetitive TMS (rTMS) neuromodulation (inhibitory 1Hz or stimulatory 10Hz)
targeted to GEP hotspots shape gastric motor responses (Aim 2). This preliminary clinical research will
develop GEPs as a non-invasive, direct measure of the neural circuit linking the cerebral cortex to the control
of the stomach, with similar reliability and reproducibility to methods used to elicit MEPs. Our work will guide
the development of TMS as a tool for mechanistic studies of gastric physiology in human subjects and brain-
based methods to manipulate stomach function. This line of work could lead to clinical trials of TMS
neuromodulation, directed to cortical sites identified as inducing maximal GEP responses, to treat gastric
motility disturbances that arise in a variety of clinical contexts.
项目概述:通过非侵入性电刺激引起的运动诱发电位(MEP)
人类大脑是研究将皮层输出与脊髓连接起来的神经回路的基础。
脊髓和肌肉。经颅磁刺激(TMS)方法已经允许研究
通过监测清醒人类受试者的MEP来研究运动控制系统的组织和可塑性,
这些见解导致了用于评估和治疗运动功能障碍的无数临床应用。形成鲜明对比
从外周骨骼肌的MEP,没有可比的,客观的衡量中枢神经的影响
对胃肠道平滑肌的影响这一基本障碍阻碍了
神经胃肠病学通过限制研究皮层对神经系统的影响的组织和可塑性的能力,
神经控制的胃肠道系统在清醒的人类受试者。为了克服这一障碍,我们最近
开发了一种直接的电生理学读出的神经回路连接皮层到胃,我们称之为
胃诱发电位(GEPs)。GEP是通过将TMS与皮肤细胞偶联而产生的。
胃电描记术(EGG),其提供胃平滑肌的连续电生理读数
活动我们的初步研究表明,不同的GEP信号产生的TMS刺激的主要
运动皮层(M1)。类似于TMS引发的欧洲议会议员在
引导运动的神经控制的探索,TMS引起的GEP将引导运动的神经控制的探索。
胃肠道运动的神经控制(即“肠道运动”)。在本项目中,我们寻求确定并标准化如何
最好记录GEP,优化TMS参数和诱发GEP所需的条件,并识别
最容易产生GEP的皮质部位(“GEP热点”)的位置(目标1)。然后我们将评估
是否有各种模式的重复TMS(rTMS)神经调制(抑制性1Hz或刺激性10 Hz)
靶向GEP热点形成胃运动反应(目的2)。这项初步的临床研究将
开发GEP作为连接大脑皮层与控制的神经回路的非侵入性直接测量
该方法具有与用于引出MEP的方法相似的可靠性和可重复性。我们的工作将指导
TMS作为人体和大脑胃生理学机制研究工具的发展-
的方法来操纵胃功能。这项工作可能会导致TMS的临床试验
神经调节,针对被鉴定为诱导最大GEP反应的皮质部位,以治疗胃
在各种临床环境中出现的运动障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID J LEVINTHAL其他文献
DAVID J LEVINTHAL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID J LEVINTHAL', 18)}}的其他基金
The Role of MKPs in Oxidative Neuronal Cell Death
MKP 在氧化性神经细胞死亡中的作用
- 批准号:
6486498 - 财政年份:2002
- 资助金额:
$ 23.79万 - 项目类别:
The Role of MKPs in Oxidative Neuronal Cell Death
MKP 在氧化性神经细胞死亡中的作用
- 批准号:
6933906 - 财政年份:2002
- 资助金额:
$ 23.79万 - 项目类别:
The Role of MKPs in Oxidative Neuronal Cell Death
MKP 在氧化性神经细胞死亡中的作用
- 批准号:
6762407 - 财政年份:2002
- 资助金额:
$ 23.79万 - 项目类别:
The Role of MKPs in Oxidative Neuronal Cell Death
MKP 在氧化性神经细胞死亡中的作用
- 批准号:
6626109 - 财政年份:2002
- 资助金额:
$ 23.79万 - 项目类别:














{{item.name}}会员




