Characterization of Gastric Evoked Potentials
胃诱发电位的表征
基本信息
- 批准号:10451224
- 负责人:
- 金额:$ 23.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AreaBase of the BrainBrainCerebral cortexCharacteristicsChronic stressClinicalClinical ResearchClinical TrialsCouplingCutaneousDataDevelopmentDiagnosisDiagnosticElectric StimulationElectrodesElectrophysiology (science)Evoked PotentialsFastingFoundationsFrequenciesFutureGastrointestinal tract structureGenerationsHumanLeadLeftLinkLocationMeasuresMethodsMonitorMood DisordersMotorMotor ActivityMotor CortexMotor Evoked PotentialsMovementMuscleNeural PathwaysNeuronsOutputParkinson DiseasePathway interactionsPeripheralPhasePhysiologic pulsePhysiologyPilot ProjectsReproducibilityRodent ControlRoleSensoryShapesSignal TransductionSiteSkeletal MuscleSmooth MuscleSpinal CordStandardizationStomachStrokeSystemSystems DevelopmentTechniquesTherapeuticTrainingTranscranial magnetic stimulationVisceralWaterWorkawakebasecell motilityclinical applicationdiagnostic tooleffective therapyexperimental studygastrointestinal systemhuman subjectinsightmotility disordermotor controlmotor disordermultiple sclerosis patientneural circuitneuroregulationnonhuman primatenoninvasive brain stimulationnovelrelating to nervous systemrepetitive transcranial magnetic stimulationresearch and developmentresponsestomach motilitystress disordertool
项目摘要
Project Summary: Motor evoked potentials (MEPs) elicited via non-invasive electrical stimulation of the
human brain are the foundational basis for investigating the neural circuits that link cortical output to the spinal
cord and muscles. Transcranial magnetic stimulation (TMS) methods have allowed the study of the
organization and plasticity of motor control systems by monitoring MEPs in awake human subjects, with
insights leading to myriad clinical applications for assessing and treating motor dysfunction. In stark contrast to
MEPs from peripheral skeletal muscle, there is no comparable, objective measure of central neural influences
on the smooth muscles of the gastrointestinal tract. This fundamental barrier has hindered progress in
neurogastroenterology by limiting the ability to study the organization and plasticity of cortical influences on the
neural control of the GI system in awake human subjects. To overcome this barrier, we have recently
developed a direct electrophysiological readout of a neural circuit linking the cortex to the stomach that we call
gastric evoked potentials (GEPs). GEPs are generated by coupling TMS with cutaneous
electrogastrography (EGG), which provides a continual electrophysiological readout of gastric smooth muscle
activity. Our pilot studies demonstrated distinct GEP signals resulting from TMS stimulation of the primary
motor cortex (M1) in human subjects. Analogous to the fundamental role TMS-elicited MEPs have had in
guiding the exploration of the neural control of movement, TMS-elicited GEPs will guide the exploration of the
neural control of GI movement (i.e. `gut motility'). In this project, we seek to determine and standardize how
best to record GEPs, to optimize the TMS parameters and conditions necessary to evoke GEPs, and to identify
the location of cortical sites that most readily generate GEPs (`GEP hotspots') (Aim 1). We then will assess
whether various modes of repetitive TMS (rTMS) neuromodulation (inhibitory 1Hz or stimulatory 10Hz)
targeted to GEP hotspots shape gastric motor responses (Aim 2). This preliminary clinical research will
develop GEPs as a non-invasive, direct measure of the neural circuit linking the cerebral cortex to the control
of the stomach, with similar reliability and reproducibility to methods used to elicit MEPs. Our work will guide
the development of TMS as a tool for mechanistic studies of gastric physiology in human subjects and brain-
based methods to manipulate stomach function. This line of work could lead to clinical trials of TMS
neuromodulation, directed to cortical sites identified as inducing maximal GEP responses, to treat gastric
motility disturbances that arise in a variety of clinical contexts.
项目概述:运动诱发电位(MEPs)是通过非侵入性电刺激引起的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID J LEVINTHAL其他文献
DAVID J LEVINTHAL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID J LEVINTHAL', 18)}}的其他基金
The Role of MKPs in Oxidative Neuronal Cell Death
MKP 在氧化性神经细胞死亡中的作用
- 批准号:
6486498 - 财政年份:2002
- 资助金额:
$ 23.79万 - 项目类别:
The Role of MKPs in Oxidative Neuronal Cell Death
MKP 在氧化性神经细胞死亡中的作用
- 批准号:
6626109 - 财政年份:2002
- 资助金额:
$ 23.79万 - 项目类别:
The Role of MKPs in Oxidative Neuronal Cell Death
MKP 在氧化性神经细胞死亡中的作用
- 批准号:
6762407 - 财政年份:2002
- 资助金额:
$ 23.79万 - 项目类别:
The Role of MKPs in Oxidative Neuronal Cell Death
MKP 在氧化性神经细胞死亡中的作用
- 批准号:
6933906 - 财政年份:2002
- 资助金额:
$ 23.79万 - 项目类别:














{{item.name}}会员




