Mechanisms of microtubule-based transport

基于微管的运输机制

基本信息

项目摘要

PROJECT SUMMARY The contents of eukaryotic cells are highly dynamic, yet organized spatially and temporally. This is achieved primarily by the microtubule cytoskeleton and associated transport machinery, whose fundamental nature is highlighted by the many neurological diseases caused by mutations in them. The overarching goal of my research program is to understand how this system works at the molecular, cellular, and organismal scales. My team is highly interdisciplinary and we use in vitro biochemical reconstitution, protein engineering, single-molecule imaging, proteomics, live-cell imaging, and fungal genetics to achieve our goals. Through collaborative projects we use cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET) to incorporate a structure-guided approach to understanding intracellular transport, and we develop testable quantitative physical models of transport. We have made major contributions to determining how the dynein motor works and is regulated, to developing tools and screening strategies to study bi-directional movement of cargos on microtubules, and to understanding the regulation of intracellular transport in cells. Fundamental questions that we will address here include: (1) How does the dynein motor work? Our earlier work revealed how Lis1, a protein mutated in the neurodevelopmental disease lissencephaly, interacts with dynein and regulates its mechanochemical cycle. Here, we will focus on determining the mechanistic underpinnings for how Lis1 promotes the formation of activated dynein/dynactin complexes. We will also explore a new direction—the role of RNA editing—as a previously undescribed mechanism to regulate dynein and kinesin motors. Microtubule-based motors move dozens if not hundreds of cargos. (2) How is cargo-specificity achieved? Our past work used two complementary discovery-based approaches—genetics and proteomics—to identify molecules responsible for specifying dynein’s many functions. One mechanism revealed by our past work is organelle hitchhiking, where cargos link to motors indirectly, by attaching themselves to other cargos that are directly bound to the motors. A second strategy for achieving cargo specificity is the expansion of dynein activating adaptor genes in vertebrates. However, the molecular connections between most activating adaptors and dynein’s cargo are unknown. Here, we will determine the mechanisms underlying hitchhiking and the linkages between the Hook and Ninein families of activating adaptors and their cargos. As an additional approach to understand how dynein and kinesin link to their cargos, we will visualize these connections in cells in three dimensions using cryo-electron tomography of endosomes in Aspergillus nidulans and melanosomes in Xenopus laevis melanophores, two systems where we can use exquisite genetics or chemical tools to control microtubule- based motility.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAMARA L RECK-PETERSON其他文献

SAMARA L RECK-PETERSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAMARA L RECK-PETERSON', 18)}}的其他基金

Mechanisms of microtubule-based transport
基于微管的运输机制
  • 批准号:
    10205528
  • 财政年份:
    2021
  • 资助金额:
    $ 36.85万
  • 项目类别:
Mechanisms of microtubule-based transport
基于微管的运输机制
  • 批准号:
    10661663
  • 财政年份:
    2021
  • 资助金额:
    $ 36.85万
  • 项目类别:
Cellular control of microtubule-based transport.
基于微管的运输的细胞控制。
  • 批准号:
    9923705
  • 财政年份:
    2017
  • 资助金额:
    $ 36.85万
  • 项目类别:
Dissecting dynein motor function using DNA nanotechnology
使用 DNA 纳米技术剖析动力蛋白运动功能
  • 批准号:
    8436011
  • 财政年份:
    2013
  • 资助金额:
    $ 36.85万
  • 项目类别:
Dissecting dynein motor function using DNA nanotechnology
使用 DNA 纳米技术剖析动力蛋白运动功能
  • 批准号:
    8774615
  • 财政年份:
    2013
  • 资助金额:
    $ 36.85万
  • 项目类别:
Dissecting dynein motor function using DNA nanotechnology
使用 DNA 纳米技术剖析动力蛋白运动功能
  • 批准号:
    9162726
  • 财政年份:
    2013
  • 资助金额:
    $ 36.85万
  • 项目类别:
Molecular Dissection of Cytoplasmic Dynein
细胞质动力蛋白的分子解剖
  • 批准号:
    6848302
  • 财政年份:
    2003
  • 资助金额:
    $ 36.85万
  • 项目类别:
Molecular Dissection of Cytoplasmic Dynein
细胞质动力蛋白的分子解剖
  • 批准号:
    6584347
  • 财政年份:
    2003
  • 资助金额:
    $ 36.85万
  • 项目类别:
Molecular Dissection of Cytoplasmic Dynein
细胞质动力蛋白的分子解剖
  • 批准号:
    6702245
  • 财政年份:
    2003
  • 资助金额:
    $ 36.85万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 36.85万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 36.85万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.85万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.85万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 36.85万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.85万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 36.85万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 36.85万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 36.85万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.85万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了