Prediction of suicide death using EHR and polygenic risk scores

使用 EHR 和多基因风险评分预测自杀死亡

基本信息

  • 批准号:
    10451573
  • 负责人:
  • 金额:
    $ 68.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

ABSTRACT Suicide is a leading cause of death that continues to increase, with over 47,000 preventable suicide deaths per year in the U.S. Although we have made great strides in using electronic health records (EHR) and other factors to predict suicidal ideation and behavior, our ability to reliably predict suicide death is close to zero. From a healthcare standpoint, predicting suicide deaths is tricky. We know that the incidence of suicide behaviors is far more common (~4%-5% per year) compared to suicide death (~0.01%-0.02% per year). Essentially, only a small fraction of those who engage in suicidal behaviors will go on to die by suicide. Knowledge of who these highest risk individuals are is critically important in directing prevention efforts and development of future targeted interventions. In addition, well over half of suicide deaths occur with no prior attempts, even accounting for lack of documentation of attempts in diagnostic codes. These “out of the blue” cases suggest one or more high-risk groups even more elusive to accurate prediction and prevention. Including genetic data of suicide deaths may offer substantial predictive improvement; genetic factors account for close to 50% of the risk of suicide death. Using the extensive genetic data, statewide longitudinal EHR resources, demographic, and familial data available to the Utah Suicide Genetic Risk Study (USGRS), we are uniquely poised to address this critical knowledge gap. Our primary focus will be to use machine learning methods develop models that predict suicide deaths. In addition, our large suicide death research resource will also allow us to model differences of suicide deaths with vs. without prior attempts. Of the ~9,000 Utah suicide deaths with demographics and environmental data, familial data, and 2 decades of longitudinal EHR data, the USGRS also currently has DNA from >6,000, which will increase to ~10,000 during the award period. Genome- wide molecular data is in hand for over 5,000 of these Utah suicides, allowing for tests of association of suicide subtypes identified using EHR data with “genetic phenotypes” represented by polygenic risk scores. The USGRS also has demographics, familial data, and longitudinal EHR data from 5 age/sex- matched Utah population controls for each suicide death, allowing for comparisons of non-lethal attempts to suicide deaths. In addition, we will collaborate with colleagues at the Mount Sinai School of Medicine, who are currently developing EHR and polygenic risk models to study substance use disorder, anxiety, and major depressive disorder in 37,510 participants in the Mount Sinai BioMe Biorepository. They will expand this work to include suicidality to provide an additional resource of suicide attempt for our model development and testing. We will additionally study polygenic risk scores associated with suicide death vs. attempt using our resources, Mount Sinai BioMe, and a collaboration with Vanderbilt University for access to their Biobank and to suicide attempts in the UK Biobank.. Independent validation will be possible through genotyping of new Utah suicides collected throughout the project, with additional comparisons to attempt cases in large datasets available through the PsychEMERGE consortium.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hilary Coon其他文献

Hilary Coon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hilary Coon', 18)}}的其他基金

Prediction of suicide death using EHR and polygenic risk scores
使用 EHR 和多基因风险评分预测自杀死亡
  • 批准号:
    10659155
  • 财政年份:
    2020
  • 资助金额:
    $ 68.9万
  • 项目类别:
Prediction of suicide death using EHR and polygenic risk scores
使用 EHR 和多基因风险评分预测自杀死亡
  • 批准号:
    10239191
  • 财政年份:
    2020
  • 资助金额:
    $ 68.9万
  • 项目类别:
Genetic risk discovery using WGS from a population-based resource of 10,000 suicide deaths with DNA
使用全基因组测序 (WGS) 从 10,000 例自杀死亡病例的人口资源中发现遗传风险
  • 批准号:
    10553712
  • 财政年份:
    2020
  • 资助金额:
    $ 68.9万
  • 项目类别:
Prediction of suicide death using EHR and polygenic risk scores
使用 EHR 和多基因风险评分预测自杀死亡
  • 批准号:
    10027263
  • 财政年份:
    2020
  • 资助金额:
    $ 68.9万
  • 项目类别:
Genetic risk discovery using WGS from a population-based resource of 10,000 suicide deaths with DNA
使用全基因组测序 (WGS) 从 10,000 例自杀死亡病例的人口资源中发现遗传风险
  • 批准号:
    10337286
  • 财政年份:
    2020
  • 资助金额:
    $ 68.9万
  • 项目类别:
Genetic analysis of high-risk Utah suicide pedigrees
犹他州高风险自杀家系的遗传分析
  • 批准号:
    9114177
  • 财政年份:
    2013
  • 资助金额:
    $ 68.9万
  • 项目类别:
Genetic analysis of high-risk Utah suicide pedigrees
犹他州高风险自杀家系的遗传分析
  • 批准号:
    8850718
  • 财政年份:
    2013
  • 资助金额:
    $ 68.9万
  • 项目类别:
Genetic analysis of high-risk Utah suicide pedigrees
犹他州高风险自杀家系的遗传分析
  • 批准号:
    9033440
  • 财政年份:
    2013
  • 资助金额:
    $ 68.9万
  • 项目类别:
Genetic analysis of high-risk Utah suicide pedigrees
犹他州高风险自杀家系的遗传分析
  • 批准号:
    9275545
  • 财政年份:
    2013
  • 资助金额:
    $ 68.9万
  • 项目类别:
Genetic analysis of high-risk Utah suicide pedigrees
犹他州高风险自杀家系的遗传分析
  • 批准号:
    8575486
  • 财政年份:
    2013
  • 资助金额:
    $ 68.9万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 68.9万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 68.9万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.9万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.9万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 68.9万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.9万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 68.9万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 68.9万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 68.9万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.9万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了