Nanoparticle-based optical magnetometer for room-temperature magnetoencephalography
用于室温脑磁图的纳米颗粒光学磁力计
基本信息
- 批准号:10449972
- 负责人:
- 金额:$ 21.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Acoustic StimulationAddressAffectBenchmarkingBrainCobaltCollaborationsColoradoDetectionDevelopmentDevicesDiagnosisDiagnosticElectronicsElectrophysiology (science)ElementsExhibitsFrequenciesFunctional Magnetic Resonance ImagingHeadHeatingHospitalsHumanIonsIronLightMagnetic nanoparticlesMagnetismMagnetoencephalographyMeasurementMeasuresMedicalNeuronsNoiseOpticsParticle SizePerformancePersonsPlanet EarthPolymersPositioning AttributePropertyPumpResearchScalp structureShapesSignal TransductionSilicon DioxideSourceSurfaceSystemTechniquesTechnologyTemperatureUnited StatesUniversitiesbasecryogenicsdesigndetection sensitivityferritefrequency combhuman imaginghuman subjectimprovedin vivoinnovationmagnetic fieldmagnetite ferrosoferric oxidemild traumatic brain injurynanomaterialsnanoparticleneuroimagingnew technologynoveloxidationportabilityprogramsquantumrelating to nervous systemsensorsuperconducting quantum interference devicetelecom-wavelengthtemporal measurementtooltreatment planning
项目摘要
PROJECT SUMMARY
This project is aimed at developing a novel magnetometer for room-temperature magnetoencephalography
(MEG), a functional neuroimaging technique that allows direct imaging of human brain electrophysiology by
measurement of weak magnetic fields generated by active neurons. Compared to functional magnetic resonance
imaging, MEG is more effective in localizing and tracking brain activities thanks to its high temporal resolution.
State-of-the-art MEG employs either superconducting quantum interference device (SQUID) or microfabricated
optically pumped magnetometers (µOPMs) as their sensing elements. SQUID provides the highest sensitivity
but requires cryogenic cooling, which severely limits its portability. µOPM offers an excellent alternative with
much reduced form factor. However, it still requires thermal insulation (heating as opposed to cryogenic cooling)
and it has a rather limited bandwidth and dynamic range compared to SQUID.
The proposed new type of magnetometer is designed to greatly improve the signal strength and bandwidth,
reduce the complexity of active shielding and further decrease the minimum channel spacing. The sensing
element consists of uniformly dispersed magnetite nanoparticles that operate at room temperature. Thermal
insulation is no longer needed, and thus the sensing element can be placed as close as 1 mm to the human
scalp, increasing the signal strength. The system bandwidth is not fundamentally limited but set to be 1 kHz by
choice so that high-quality electronics can be utilized while maintaining the capability to detect all neural activities
from delta to high gamma frequency bands. The proposed system employs chip-scale Kerr frequency comb as
the light source and balanced in-line Sagnac interferometer as the optical readout. It can thus achieve a
magnetometer sensitivity of 20 fT/Hz1/2 and a gradiometer sensitivity of 5 fT/cm∙Hz1/2 under a strong ambient
field of 100 µT, reducing the complexity in field-shielding and making possible a dense array of sensor heads.
The proposed research has two key innovations. First, magnetite nanoparticles will be synthesized, stabilized
in polymer matrices and fabricated into micro-optical devices. We will investigate the use of different dopant
species and surface passivation to simultaneously achieve high Verdet constant, low insertion loss, and good
long-term stability for MEG applications. Second, we will incorporate a novel chip-scale frequency comb source
to simultaneously operate an array of mm-size magnetometer sensor heads. We will take advantage of its two-
mode squeezing property for noise reduction to below the quantum limit and further enhance the detection
sensitivity of our multichannel magnetic gradiometer. At the end of the program, we will benchmark and validate
our technology by a preliminary in vivo study of two normal human subjects under auditory stimulation. The
proposed magnetometer and gradiometer would significantly improve the accuracy and portability of MEG
system, making it much more widely applicable to frontline diagnostics.
项目总结
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Turnkey photonic flywheel in a microresonator-filtered laser.
- DOI:10.1038/s41467-023-44314-8
- 发表时间:2024-01-02
- 期刊:
- 影响因子:16.6
- 作者:Nie, Mingming;Musgrave, Jonathan;Jia, Kunpeng;Bartos, Jan;Zhu, Shining;Xie, Zhenda;Huang, Shu-Wei
- 通讯作者:Huang, Shu-Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shu-Wei Huang其他文献
Shu-Wei Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shu-Wei Huang', 18)}}的其他基金
Two-photon fluorescence lifetime imaging microscopy utilizing the space-time duality
利用时空二象性的双光子荧光寿命成像显微镜
- 批准号:
10593761 - 财政年份:2023
- 资助金额:
$ 21.89万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 21.89万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 21.89万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 21.89万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 21.89万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 21.89万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 21.89万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 21.89万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 21.89万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 21.89万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 21.89万 - 项目类别:
Research Grant