Optimized MR Fingerprinting for Rapid Volumetric Quantitative Neuroimaging
用于快速体积定量神经成像的优化 MR 指纹识别
基本信息
- 批准号:10450170
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-21 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAgeAgingAlzheimer&aposs DiseaseBrainCalibrationComplexDataDetectionDiseaseDisease ProgressionFingerprintFreedomGoalsHospitalsHumanImageImaging TechniquesInstitutionLongevityMRI ScansMagnetic ResonanceMagnetic Resonance ImagingMapsMeasurementModelingNoisePatientsPatternPerformancePlayProcessPropertyProtonsPublished CommentResolutionRoleScanningScheduleSchemeSeriesSliceSpeedTechniquesThickThree-Dimensional ImagingTimeTissuesWeightWhite Matter Hyperintensitybasebrain magnetic resonance imagingdata acquisitiondata modelingdata spacedensityexperimental studyfallsflexibilityheuristicsimage reconstructionimaging biomarkerimprovedin vivomagnetic fieldneuroimagingnovelquantitative imagingreconstructionsignal processingsimulation
项目摘要
PROJECT SUMMARY/ABSTRACT
MRI scans are primarily performed and evaluated in a qualitative way using contrast-weighted images (e.g.,
with T1, T2 or proton-density weighting). This image weighting is a nonlinear function of one or more of these
intrinsic MR tissue parameters as modulated by external scanner settings and imperfections. In quantitative
mapping of MR tissue parameters, we attempt to unravel this complex combination to provide a direct
characterization of the tissue parameter in absolute units. This has potential to improve direct comparisons of
scans across different institutions and/or scanners, and also facilitates the understanding of disease progression
and treatment for a single patient across time. Although the potential of quantitative MRI has long been
recognized, its use has been limited by lengthy acquisition times. Magnetic resonance fingerprinting (MRF) is a
recent breakthrough in quantitative MRI that enables simultaneous measurements of multiple tissue parameters
in a single experiment, dramatically shortening acquisition time to ~15 sec per imaging slice and providing
intrinsically registered maps. However, this can still result in unacceptably lengthy acquisitions for high-resolution,
volumetric quantitative imaging. For example, MRF can take up to 20 min for a volumetric whole-brain acquisition
with a spatial resolution of 1.2×1.2×5 mm3, a resolution which, itself, falls short of that needed for structural
neuroimaging analysis. The major deficiency is due to the sub-optimal data acquisition and image reconstruction
schemes currently employed.
In this application, we will optimize the data acquisition and image reconstruction for MRF by a rigorous
statistical signal processing framework, with an overall goal of improving the accuracy and speed of for volumetric
neuroimaging. In particular, we will exploit the tremendous flexibility/freedom inherent to volumetric acquisition
and image reconstruction to improve accuracy and efficiency. Specifically, we will address the image
reconstruction problem with a principled statistical reconstruction approach that incorporates (1) a data model
for multi-channel acquisitions, (2) a low-rank tensor image model for volumetric time-series images, and (3) a
statistical noise model. We will characterize the reconstruction performance (e.g., error bars) by calculating the
constrained Cramer-Rao bounds (CRB) under low-rank tensor models. We address the data acquisition
problem, by utilizing the constrained CRB as metrics to optimize MRF data acquisition parameters (e.g., flip
angle and repletion time schedule) and k-space trajectories (e.g., stack-of-spiral trajectories) for improved SNR
efficiency. Together, we expect that the proposed technique produces 2x more accurate MR tissue
parameter maps, enabling a desirable resolution (e.g., isotropic 0.8 mm3) and a whole-brain coverage in
a short acquisition time (e.g., 3 minutes). Finally, we will systematically validate the performance of the
proposed technique and its utility for ageing studies, for which quantitative imaging biomarkers enabled by rapid,
whole-brain MRI are playing an increasingly important role.
项目摘要/摘要
主要使用对比度加权图像以定性的方式执行和评估MRI扫描(例如,
具有T1、T2或质子密度加权)。该图像权重是其中一个或多个的非线性函数
由外部扫描仪设置和缺陷调制的固有MR组织参数。在数量上
磁共振组织参数的测绘,我们试图解开这种复杂的组合,以提供直接的
以绝对单位表征组织参数。这有可能改善对
跨不同机构和/或扫描仪进行扫描,还有助于了解疾病进展情况
以及对一名患者的治疗。尽管定量核磁共振的潜力长期以来一直是
尽管已经得到认可,但由于收购时间较长,它的使用一直受到限制。磁共振指纹识别(MRF)是一种
定量磁共振成像的最新突破,可以同时测量多个组织参数
在单个实验中,将采集时间大幅缩短至每个成像切片约15秒,并提供
登记在册的地图。然而,这仍然可能导致对高分辨率的长得令人无法接受的获取,
体积定量成像。例如,磁共振成像可能需要长达20分钟的全脑体积采集
空间分辨率为1.2×1.2×5 mm~3,这一分辨率本身就低于结构分析所需的分辨率
神经影像分析。主要的不足之处在于数据采集和图像重建不够理想
目前正在实施的计划。
在这一应用中,我们将通过严格的
统计信号处理框架,总体目标是提高体积测量的精度和速度
神经成像。特别是,我们将利用体积采集固有的巨大灵活性/自由度
和图像重建,以提高精度和效率。具体地说,我们将解决图像
结合(1)数据模型的原则性统计重建方法的重建问题
对于多通道采集,(2)体积时间序列图像的低阶张量图像模型,以及(3)
统计噪声模型。我们将通过计算以下参数来表征重建性能(例如误差条
低阶张量模型下的约束Cramer-Rao界(CRB)。我们解决了数据采集问题
问题,通过使用受限CRB作为度量来优化MRF数据采集参数(例如,翻转
角度和补充时间安排)和k空间轨迹(例如,螺旋堆叠轨迹)以改善SNR
效率。总而言之,我们期望所提出的技术产生的磁共振组织的精确度提高2倍
参数图,实现所需的分辨率(例如,各向同性0.8mm3)和全脑覆盖
获取时间短(例如,3分钟)。最后,我们将系统地验证该算法的性能
拟议的技术及其在衰老研究中的效用,对于该技术,通过快速、
全脑核磁共振发挥着越来越重要的作用。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Further Development of Subspace Imaging to Magnetic Resonance Fingerprinting: A Low-rank Tensor Approach.
- DOI:10.1109/embc44109.2020.9175853
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Zhao B;Setsompop K;Salat D;Wald LL
- 通讯作者:Wald LL
An efficient approach to optimal experimental design for magnetic resonance fingerprinting with B-splines.
- DOI:10.1002/mrm.29212
- 发表时间:2022-07
- 期刊:
- 影响因子:3.3
- 作者:Crafts, Evan Scope;Lu, Hengfa;Ye, Huihui;Wald, Lawrence L.;Zhao, Bo
- 通讯作者:Zhao, Bo
Active Sampling for Accelerated MRI with Low-Rank Tensors.
- DOI:10.1109/embc48229.2022.9871360
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Accelerated Black-Blood Cine MR Imaging with Low-Rank and Sparsity Constraints.
具有低秩和稀疏约束的加速黑血电影 MR 成像。
- DOI:10.1109/embc40787.2023.10340783
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Sun,Aiqi;Lu,Hengfa;Wu,Peng;Zhao,Bo
- 通讯作者:Zhao,Bo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bo Zhao其他文献
Bo Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bo Zhao', 18)}}的其他基金
Molecular Mechanisms of Aminoglycoside Ototoxicity
氨基糖苷类耳毒性的分子机制
- 批准号:
10569609 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Molecular Mechanisms of Aminoglycoside Ototoxicity
氨基糖苷类耳毒性的分子机制
- 批准号:
10443277 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Optimized MR Fingerprinting for Rapid Volumetric Quantitative Neuroimaging
用于快速体积定量神经成像的优化 MR 指纹识别
- 批准号:
10266853 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Optimized MR Fingerprinting for Rapid Volumetric Quantitative Neuroimaging
用于快速体积定量神经成像的优化 MR 指纹识别
- 批准号:
10260805 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Functions of Fam65b protein complex at the basal stereocilia in hearing and deafness
基底静纤毛 Fam65b 蛋白复合物在听力和耳聋中的功能
- 批准号:
10194456 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
Functions of Fam65b protein complex at the basal stereocilia in hearing and deafness
基底静纤毛 Fam65b 蛋白复合物在听力和耳聋中的功能
- 批准号:
10433855 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
Targeting Epstein-Barr Virus Super-Enhancer
针对 Epstein-Barr 病毒超级增强子
- 批准号:
9970995 - 财政年份:2016
- 资助金额:
$ 24.9万 - 项目类别:
Targeting Epstein-Barr Virus Super-Enhancer
靶向 Epstein-Barr 病毒超级增强子
- 批准号:
10379876 - 财政年份:2016
- 资助金额:
$ 24.9万 - 项目类别:
Targeting Epstein-Barr Virus Super-Enhancer
靶向 Epstein-Barr 病毒超级增强子
- 批准号:
10596159 - 财政年份:2016
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant