Optimal control models of epithelial-mesenchymal transition for the design of pancreas cancer combination therapy
用于设计胰腺癌联合治疗的上皮-间质转化的最佳控制模型
基本信息
- 批准号:10450032
- 负责人:
- 金额:$ 45.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Adenocarcinoma CellAdjuvantAgonistCellsCessation of lifeChemoresistanceClinical TrialsCombined Modality TherapyComplexComputer ModelsCoupledDataData SetDiagnosisDiseaseDrug CombinationsElementsEngineeringEpithelialFeedbackFibroblastsGoalsHumanHypoxiaIn VitroLeast-Squares AnalysisLightMaintenanceMalignant NeoplasmsMalignant neoplasm of pancreasMeasurementMeasuresMesenchymalMethodologyMethodsModelingNeoplasm MetastasisNucleoside TransporterPancreatic AdenocarcinomaPancreatic Ductal AdenocarcinomaPathologic ProcessesPathologyPathway interactionsPatientsPharmaceutical PreparationsPhenotypePhosphoproteinsPhosphorylationPhosphotransferasesPrimary NeoplasmProcessPrognosisRegimenRegulationResectableResistanceResponse to stimulus physiologyScheduleSignal PathwaySignal TransductionSurgical OncologistSurvival RateSystemSystemic TherapySystems AnalysisSystems BiologyTestingTherapeuticTherapeutic InterventionTimeToxic effectTreatment EfficacyTumor BurdenValidationWorkantagonistbasechemotherapyclinical efficacycombination cancer therapycomputational platformcomputer frameworkcontrol theorydata-driven modeldesignepithelial to mesenchymal transitionexperimental studyhigh dimensionalityin vivoin vivo evaluationinhibitormouse modelmultidisciplinaryneoplastic cellnovel strategiespancreatic cancer patientspancreatic ductal adenocarcinoma cellpancreatic ductal adenocarcinoma modelpatient derived xenograft modelpre-clinicalpreclinical studypredictive modelingresponsetraittranslational potentialtreatment responsetumor microenvironment
项目摘要
PROJECT SUMMARY
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and common cancer, with an overall five-year
survival rate of 6%. Among the factors contributing to this dismal statistic is the observation that epithelial-
derived PDAC cells, sometimes in direct response to therapy, can de-differentiate to a mesenchymal state in
which they are more chemoresistant. This observation prompts the question: should epithelial-mesenchymal
transition (EMT) be targeted to promote therapeutic response and increase patient survival? The main barrier
to exploring this idea is that we do not know how to target EMT precisely, especially in light of the complex
multivariate cell signaling dynamics that drive EMT and maintain it as a feedback response to chemotherapy.
We recently undertook a preliminary study to identify a group of druggable cell signaling pathways that may
cooperatively drive the mesenchymal state in PDAC. However, the translational potential of our current
analysis is limited in that it merely identified potential targets; it does not provide any systematic actionable
understanding, nor testable predictions, of how best to schedule combinations of drugs in time to maximize
therapeutic efficacy and minimize unintended toxicity. Consequently, we now seek to extend our preliminary
studies to develop a systems biology platform for the systematic determination of scheduled combination
therapy approaches for PDAC designed to maximally suppress EMT during treatment. In Aim 1, we will make
dynamic measurements of signaling pathway activity and cell phenotypes in PDAC cells treated with drivers of
EMT, antagonists of EMT, and chemotherapeutics. Our measurements will cover those pathways already
identified in our preliminary work as the most likely druggable regulators of EMT, and will include the effects of
hypoxia and cancer-associated fibroblasts, elements of the tumor microenvironment that may impact EMT
regulation. The goal is to obtain an information-rich data set to be used subsequently for model identification
and control computations. In Aim 2, we will use the dynamic data to develop the computational platform for
determining optimal changes to the drivers and antagonists required to achieve maximal suppression of EMT,
to be implemented as scheduled combination therapies for PDAC. This will be accomplished through: (i)
identification of a dynamic model for epithelial or mesenchymal cell state determination in response to
phosphoprotein perturbations (i.e., quantitative characterization, in the form of a computational model, the EMT
response to changes in its drivers and antagonists) and (ii) deploying the model “in reverse” to determine, via
optimal control principles, how best to combine and schedule drugs for optimal maintenance of the epithelial
phenotype. In Aim 3, we will test the model-based schedules for combination therapy in a sequence of in vitro
and in vivo experiments. Ultimately, these studies will provide pre-clinical validation for a new strategy to
develop therapeutic regimens that target a pathological process in PDAC that limits therapeutic response. New
approaches are urgently needed, as PDAC survival rates have not changed in nearly 40 years.
项目摘要
胰腺导管腺癌(PDAC)是一种高度致命和常见的癌症,总体五年
存活率为6%。造成这种令人沮丧统计的因素之一是观察到上皮
衍生的PDAC细胞有时直接反应治疗,可以将分化为间质状态
它们更具有化学抗性。该观察结果提示了一个问题:应该上皮 - 间质
过渡(EMT)的目标是促进热反应并增加患者的存活?主要障碍
探索这个想法是,我们不知道如何精确地靶向EMT,尤其是鉴于复杂
多变量细胞信号传导动力学驱动EMT并将其保持为对化学疗法的反馈反应。
我们最近进行了一项初步研究,以识别一组可吸毒的细胞信号传导途径
合作驱动PDAC的间质状态。但是,我们当前的翻译潜力
分析受到限制,因为它仅确定了潜在目标。它没有提供任何系统的可行
理解或可检验的预测,如何最好地安排药物组合以及时最大化
治疗效率并最大程度地减少意外毒性。因此,我们现在试图扩展我们的初步
研究开发系统生物学平台以系统地确定计划组合
PDAC的治疗方法旨在在治疗过程中最大程度地抑制EMT。在AIM 1中,我们将
信号通路活动活性和细胞表型的动态测量在用驱动因素处理的PDAC细胞中
EMT,EMT的拮抗剂和化学疗法。我们的测量将涵盖这些途径
在我们的初步工作中确定为EMT的最可能吸毒调节剂,并将包括
缺氧和癌症相关的成纤维细胞,可能影响EMT的肿瘤微环境的元素
规定。目的是获得一个富含信息的数据集,以便随后用于模型标识
和控制计算。在AIM 2中,我们将使用动态数据来开发用于的计算平台
确定最大程度地抑制EMT所需的驱动因素和拮抗剂的最佳变化,
将作为PDAC的计划组合疗法实施。这将通过:(i)
鉴定上皮或间质细胞状态测定的动态模型。
磷蛋白扰动(即定量表征,以计算模型的形式,EMT的形式
对其驱动因素和对手的变化的响应)和(ii)部署模型“反向”以确定通过
最佳控制原则,如何最好地组合和安排药物以最佳维护上皮
表型。在AIM 3中,我们将根据体外测试基于模型的组合疗法的时间表
和体内实验。最终,这些研究将为新策略提供临床前验证
开发针对PDAC中病理过程的理论方案,该方案限制了治疗反应。新的
由于PDAC生存率在近40年内没有改变,因此迫切需要方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew J Lazzara其他文献
Matthew J Lazzara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew J Lazzara', 18)}}的其他基金
EGFR signaling network adaptations to overcome RAS-induced membrane stress in glioblastoma
EGFR信号网络适应克服胶质母细胞瘤中RAS诱导的膜应激
- 批准号:
10525284 - 财政年份:2022
- 资助金额:
$ 45.23万 - 项目类别:
EGFR signaling network adaptations to overcome RAS-induced membrane stress in glioblastoma
EGFR信号网络适应克服胶质母细胞瘤中RAS诱导的膜应激
- 批准号:
10703483 - 财政年份:2022
- 资助金额:
$ 45.23万 - 项目类别:
EGFR signaling network adaptations to overcome RAS-induced membrane stress in glioblastoma
EGFR信号网络适应克服胶质母细胞瘤中RAS诱导的膜应激
- 批准号:
10907884 - 财政年份:2022
- 资助金额:
$ 45.23万 - 项目类别:
Engineering ERK-specificity for cancer suicide gene therapy
工程 ERK 特异性用于癌症自杀基因治疗
- 批准号:
10044569 - 财政年份:2020
- 资助金额:
$ 45.23万 - 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by TargetingTransmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
- 批准号:
10601618 - 财政年份:2020
- 资助金额:
$ 45.23万 - 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
- 批准号:
10265510 - 财政年份:2020
- 资助金额:
$ 45.23万 - 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
- 批准号:
10098384 - 财政年份:2020
- 资助金额:
$ 45.23万 - 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
- 批准号:
10436341 - 财政年份:2020
- 资助金额:
$ 45.23万 - 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
- 批准号:
10651834 - 财政年份:2020
- 资助金额:
$ 45.23万 - 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
- 批准号:
10797721 - 财政年份:2020
- 资助金额:
$ 45.23万 - 项目类别:
相似国自然基金
基于纳米铝乳剂和模式识别受体激动剂的复合型佐剂研究
- 批准号:82341043
- 批准年份:2023
- 资助金额:110 万元
- 项目类别:专项基金项目
基于串联RBD蛋白和新型STING激动剂佐剂的β属冠状病毒亚单位广谱疫苗及其机制的研究
- 批准号:82202490
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:青年科学基金项目
激发广谱、持久、强效保护性免疫反应的新型STING激动剂佐剂及其机制的研究
- 批准号:
- 批准年份:2020
- 资助金额:100 万元
- 项目类别:专项基金项目
基于工程铝盐纳米粒子和Toll样受体激动剂的复合疫苗佐剂作用机制研究
- 批准号:31870919
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
亚细胞环境响应性的纳米材料与TLR激动剂复合制剂对疫苗免疫原性的影响
- 批准号:31600812
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Project 2: Mechanisms of Resistance to Neoantigen Vaccines in PDAC
项目2:PDAC新抗原疫苗耐药机制
- 批准号:
10708575 - 财政年份:2023
- 资助金额:
$ 45.23万 - 项目类别:
Irreversible Electroporation (IRE) Combined with CD40 Agonism as In Situ Vaccine Therapy for Pancreatic Cancer
不可逆电穿孔 (IRE) 联合 CD40 激动作为胰腺癌原位疫苗治疗
- 批准号:
10718057 - 财政年份:2023
- 资助金额:
$ 45.23万 - 项目类别:
Novel roles of STAT2 and IFN-I in tumorigenesis and responses to therapy
STAT2 和 IFN-I 在肿瘤发生和治疗反应中的新作用
- 批准号:
10493938 - 财政年份:2022
- 资助金额:
$ 45.23万 - 项目类别:
Novel roles of STAT2 and IFN-I in tumorigenesis and responses to therapy
STAT2 和 IFN-I 在肿瘤发生和治疗反应中的新作用
- 批准号:
10704228 - 财政年份:2022
- 资助金额:
$ 45.23万 - 项目类别:
Type I Interferon Pathway in Pancreatic Adenocarcinoma
胰腺癌中的 I 型干扰素通路
- 批准号:
10596486 - 财政年份:2020
- 资助金额:
$ 45.23万 - 项目类别: