Optimal control models of epithelial-mesenchymal transition for the design of pancreas cancer combination therapy

用于设计胰腺癌联合治疗的上皮-间质转化的最佳控制模型

基本信息

  • 批准号:
    10450032
  • 负责人:
  • 金额:
    $ 45.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and common cancer, with an overall five-year survival rate of 6%. Among the factors contributing to this dismal statistic is the observation that epithelial- derived PDAC cells, sometimes in direct response to therapy, can de-differentiate to a mesenchymal state in which they are more chemoresistant. This observation prompts the question: should epithelial-mesenchymal transition (EMT) be targeted to promote therapeutic response and increase patient survival? The main barrier to exploring this idea is that we do not know how to target EMT precisely, especially in light of the complex multivariate cell signaling dynamics that drive EMT and maintain it as a feedback response to chemotherapy. We recently undertook a preliminary study to identify a group of druggable cell signaling pathways that may cooperatively drive the mesenchymal state in PDAC. However, the translational potential of our current analysis is limited in that it merely identified potential targets; it does not provide any systematic actionable understanding, nor testable predictions, of how best to schedule combinations of drugs in time to maximize therapeutic efficacy and minimize unintended toxicity. Consequently, we now seek to extend our preliminary studies to develop a systems biology platform for the systematic determination of scheduled combination therapy approaches for PDAC designed to maximally suppress EMT during treatment. In Aim 1, we will make dynamic measurements of signaling pathway activity and cell phenotypes in PDAC cells treated with drivers of EMT, antagonists of EMT, and chemotherapeutics. Our measurements will cover those pathways already identified in our preliminary work as the most likely druggable regulators of EMT, and will include the effects of hypoxia and cancer-associated fibroblasts, elements of the tumor microenvironment that may impact EMT regulation. The goal is to obtain an information-rich data set to be used subsequently for model identification and control computations. In Aim 2, we will use the dynamic data to develop the computational platform for determining optimal changes to the drivers and antagonists required to achieve maximal suppression of EMT, to be implemented as scheduled combination therapies for PDAC. This will be accomplished through: (i) identification of a dynamic model for epithelial or mesenchymal cell state determination in response to phosphoprotein perturbations (i.e., quantitative characterization, in the form of a computational model, the EMT response to changes in its drivers and antagonists) and (ii) deploying the model “in reverse” to determine, via optimal control principles, how best to combine and schedule drugs for optimal maintenance of the epithelial phenotype. In Aim 3, we will test the model-based schedules for combination therapy in a sequence of in vitro and in vivo experiments. Ultimately, these studies will provide pre-clinical validation for a new strategy to develop therapeutic regimens that target a pathological process in PDAC that limits therapeutic response. New approaches are urgently needed, as PDAC survival rates have not changed in nearly 40 years.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew J Lazzara其他文献

Matthew J Lazzara的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew J Lazzara', 18)}}的其他基金

EGFR signaling network adaptations to overcome RAS-induced membrane stress in glioblastoma
EGFR信号网络适应克服胶质母细胞瘤中RAS诱导的膜应激
  • 批准号:
    10525284
  • 财政年份:
    2022
  • 资助金额:
    $ 45.23万
  • 项目类别:
EGFR signaling network adaptations to overcome RAS-induced membrane stress in glioblastoma
EGFR信号网络适应克服胶质母细胞瘤中RAS诱导的膜应激
  • 批准号:
    10703483
  • 财政年份:
    2022
  • 资助金额:
    $ 45.23万
  • 项目类别:
EGFR signaling network adaptations to overcome RAS-induced membrane stress in glioblastoma
EGFR信号网络适应克服胶质母细胞瘤中RAS诱导的膜应激
  • 批准号:
    10907884
  • 财政年份:
    2022
  • 资助金额:
    $ 45.23万
  • 项目类别:
Engineering ERK-specificity for cancer suicide gene therapy
工程 ERK 特异性用于癌症自杀基因治疗
  • 批准号:
    10044569
  • 财政年份:
    2020
  • 资助金额:
    $ 45.23万
  • 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by TargetingTransmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
  • 批准号:
    10601618
  • 财政年份:
    2020
  • 资助金额:
    $ 45.23万
  • 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
  • 批准号:
    10265510
  • 财政年份:
    2020
  • 资助金额:
    $ 45.23万
  • 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
  • 批准号:
    10098384
  • 财政年份:
    2020
  • 资助金额:
    $ 45.23万
  • 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
  • 批准号:
    10436341
  • 财政年份:
    2020
  • 资助金额:
    $ 45.23万
  • 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
  • 批准号:
    10651834
  • 财政年份:
    2020
  • 资助金额:
    $ 45.23万
  • 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
  • 批准号:
    10797721
  • 财政年份:
    2020
  • 资助金额:
    $ 45.23万
  • 项目类别:

相似海外基金

AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
  • 批准号:
    10933287
  • 财政年份:
    2023
  • 资助金额:
    $ 45.23万
  • 项目类别:
Augmenting the Quality and Duration of the Immune Response with a Novel TLR2 Agonist-Aluminum Combination Adjuvant
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
  • 批准号:
    10499193
  • 财政年份:
    2021
  • 资助金额:
    $ 45.23万
  • 项目类别:
A Novel TLR5 Agonist-Based Adjuvant for Poliovirus Vaccine
一种基于 TLR5 激动剂的新型脊髓灰质炎病毒疫苗佐剂
  • 批准号:
    9305008
  • 财政年份:
    2016
  • 资助金额:
    $ 45.23万
  • 项目类别:
Angiogenesis antagonist plus CD40-TLR agonist adjuvant combination vaccine
血管生成拮抗剂加CD40-TLR激动剂佐剂组合疫苗
  • 批准号:
    8054408
  • 财政年份:
    2010
  • 资助金额:
    $ 45.23万
  • 项目类别:
Angiogenesis antagonist plus CD40-TLR agonist adjuvant combination vaccine
血管生成拮抗剂加CD40-TLR激动剂佐剂组合疫苗
  • 批准号:
    7909550
  • 财政年份:
    2010
  • 资助金额:
    $ 45.23万
  • 项目类别:
Malaria vaccines modified with TLR agonist adjuvant
TLR 激动剂佐剂修饰的疟疾疫苗
  • 批准号:
    8126073
  • 财政年份:
    2010
  • 资助金额:
    $ 45.23万
  • 项目类别:
Malaria vaccines modified with TLR agonist adjuvant
TLR 激动剂佐剂修饰的疟疾疫苗
  • 批准号:
    7899536
  • 财政年份:
    2009
  • 资助金额:
    $ 45.23万
  • 项目类别:
C5a Agonist as a Vaccine Adjuvant for the Aged
C5a 激动剂作为老年人的疫苗佐剂
  • 批准号:
    7362543
  • 财政年份:
    2007
  • 资助金额:
    $ 45.23万
  • 项目类别:
C5a Agonist as a Vaccine Adjuvant for the Aged
C5a 激动剂作为老年人的疫苗佐剂
  • 批准号:
    7502193
  • 财政年份:
    2007
  • 资助金额:
    $ 45.23万
  • 项目类别:
C5a Agonist as a Vaccine Adjuvant for the Aged
C5a 激动剂作为老年人的疫苗佐剂
  • 批准号:
    7911043
  • 财政年份:
    2007
  • 资助金额:
    $ 45.23万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了