Promoting Receptor Protein Tyrosine Phosphatase Activity by TargetingTransmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
基本信息
- 批准号:10601618
- 负责人:
- 金额:$ 6.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-20 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcidityAffectAgonistAuthorshipAwardBindingBiologicalBiological AssayBiologyCell LineCellsComplementComputer ModelsDataDevelopmentDevelopment PlansDimerizationDisease ProgressionEpidermal Growth Factor ReceptorFamilyGoalsHealthHeterodimerizationHomodimerizationHumanKnowledgeLeadLengthLigandsLigationMammalian CellManuscriptsMass Spectrum AnalysisMeasurementMediatingMentorsMethodsModelingMolecularMusMutation AnalysisNatureOncogenicOutcomePTPRJ geneParentsPeptidesPhasePhenotypePhosphoric Monoester HydrolasesPhosphorylationPlayPropertyProtein Tyrosine PhosphataseReceptor Protein-Tyrosine KinasesRegulationReporterReportingResearchResearch ActivityResearch TrainingResistanceRoleSeriesSignal PathwaySignal TransductionSolidStructure-Activity RelationshipSystems BiologyTertiary Protein StructureTestingTrainingTransmembrane DomainTyrosine Kinase InhibitorVariantWorkbasecareercareer developmentdesignextracellularinsightinterestmeetingsmembermultidisciplinarymutantnovel therapeutic interventionparent grantprotein expressionreceptorresponsescreeningsymposiumtherapeutic targettraffickingtumortumor xenograft
项目摘要
PROJECT SUMMARY
Receptor protein tyrosine phosphatases (RPTPs) play critical signaling regulatory roles in development, health,
and disease progression. Despite the clear importance of RPTPs in signal transduction, very little is known
about the structure-function relationships that underpin the regulation of their activity. The reported ability of
RPTP homodimerization to antagonize their catalytic activity, however, presents potential opportunities to
develop strategies to promote RPTP activity against their oncogenic receptor tyrosine kinase (RTK) substrates.
We recently showed, using PTPRJ/EGFR as a model RPTP/RTK pair, that: (i) homodimerization of PTPRJ
(also known as DEP1) is regulated by transmembrane domain interactions, and (ii) disrupting these
interactions can antagonize PTPRJ homodimerization, reduce substrate EGFR phosphorylation, and
antagonize EGFR-driven cell phenotypes.
Here, we propose to build upon these new insights along three thematically interconnected, but
non-overlapping, specific aims, with the ultimate goals of: (1) demonstrating that RPTP TM domain interactions
are essential in regulating their activity and substrate access, and (2) developing a new therapeutic approach
to promote RPTP activity against their oncogenic RTK substrates.
In our first aim, we will determine the molecular determinants regulating the heterodimerization of PTPRJ with
EGFR. These studies will be complemented by extending them to understand how PTPRJ TM domain mutants
affect receptor trafficking and ultimate cell outcomes. In the second aim, we will design and select peptides
capable of binding to PTPRJ TM domains and test their ability to disrupt PTPRJ homodimerization, promote
PTPRJ activity against EGFR and other substrate RTKs, and selectively target human tumor xenografts in
mice. In the third aim, we will identify other candidate RTK substrates whose regulation by PTPRJ depends
upon TM domain-mediated heterodimerization, and determine how different cellular contexts predict the cell
signaling and phenotype outcome of interfering with PTPRJ dimerization through TM domains. To do so, we
will implement a systems biology approach based on data-driven computational modeling of phenotypic
measurements and global mass spectrometry measurements of protein phosphorylation and expression in a
panel of cell lines. This aim is motivated by an understanding that all RPTPs have multiple substrates and that
variations in expression of those substrates among cells may lead to different outcomes when PTPRJ
dimerization is disrupted.
Ultimately, the studies proposed here stand to advance both our basic biological understanding of RPTP
biology, which is critically needed, and to lead to new methods to target signaling through oncogenic RTKs that
may be less susceptible to common mechanisms of acquired resistance to RTK inhibitors.
项目摘要
受体蛋白酪氨酸磷酸酶(RPTPs)在发育、健康、
和疾病进展。尽管RPTPs在信号转导中的重要性很明显,但我们对它的了解很少。
结构与功能之间的关系是其活性调节的基础。据报道,
然而,RPTP同源二聚化以拮抗其催化活性提供了潜在的机会,
发展策略,以促进RPTP活性对他们的致癌受体酪氨酸激酶(RTK)底物。
我们最近发现,使用PTPRJ/EGFR作为模型RPTP/RTK对,
(also称为DEP 1)由跨膜结构域相互作用调节,和(ii)破坏这些
相互作用可以拮抗PTPRJ同源二聚化,减少底物EGFR磷酸化,
拮抗EGFR驱动的细胞表型。
在这里,我们建议沿着沿着三个主题相互关联的这些新的见解,
非重叠,具体的目标,与最终目标:(1)证明RPTP TM域的相互作用,
在调节它们的活性和底物进入方面是必不可少的,以及(2)开发新的治疗方法
以促进RPTP对致癌RTK底物的活性。
在我们的第一个目标中,我们将确定调节PTPRJ异源二聚化的分子决定簇,
EGFR对这些研究将通过扩展它们来补充,以了解PTPRJ TM结构域突变体
影响受体运输和最终的细胞结果。第二个目标是设计和筛选多肽
能够结合PTPRJTM结构域,并测试它们破坏PTPRJ同源二聚化、促进PTPRJ
PTPRJ对EGFR和其他底物RTK的活性,并选择性靶向人肿瘤异种移植物,
小鼠在第三个目标中,我们将确定其他候选RTK底物,其通过PTPRJ的调节依赖于
在TM结构域介导的异源二聚化,并确定如何不同的细胞环境预测细胞
通过TM结构域干扰PTPRJ二聚化的信号传导和表型结果。为此,我们
将实施基于数据驱动的表型计算建模的系统生物学方法,
蛋白质磷酸化和表达的测量和整体质谱测量,
一组细胞系。这一目标的动机是理解所有RPTP都有多种底物,
细胞间这些底物表达的变化可能导致不同的结果,
二聚化被破坏。
最终,这里提出的研究将促进我们对RPTP的基本生物学理解,
生物学,这是迫切需要的,并导致新的方法来靶向信号通过致癌RTKs,
可能对RTK抑制剂获得性抗性的常见机制不太敏感。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew J Lazzara其他文献
Matthew J Lazzara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew J Lazzara', 18)}}的其他基金
EGFR signaling network adaptations to overcome RAS-induced membrane stress in glioblastoma
EGFR信号网络适应克服胶质母细胞瘤中RAS诱导的膜应激
- 批准号:
10525284 - 财政年份:2022
- 资助金额:
$ 6.36万 - 项目类别:
EGFR signaling network adaptations to overcome RAS-induced membrane stress in glioblastoma
EGFR信号网络适应克服胶质母细胞瘤中RAS诱导的膜应激
- 批准号:
10703483 - 财政年份:2022
- 资助金额:
$ 6.36万 - 项目类别:
EGFR signaling network adaptations to overcome RAS-induced membrane stress in glioblastoma
EGFR信号网络适应克服胶质母细胞瘤中RAS诱导的膜应激
- 批准号:
10907884 - 财政年份:2022
- 资助金额:
$ 6.36万 - 项目类别:
Engineering ERK-specificity for cancer suicide gene therapy
工程 ERK 特异性用于癌症自杀基因治疗
- 批准号:
10044569 - 财政年份:2020
- 资助金额:
$ 6.36万 - 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
- 批准号:
10265510 - 财政年份:2020
- 资助金额:
$ 6.36万 - 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
- 批准号:
10098384 - 财政年份:2020
- 资助金额:
$ 6.36万 - 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
- 批准号:
10436341 - 财政年份:2020
- 资助金额:
$ 6.36万 - 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
- 批准号:
10651834 - 财政年份:2020
- 资助金额:
$ 6.36万 - 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
- 批准号:
10797721 - 财政年份:2020
- 资助金额:
$ 6.36万 - 项目类别:
Optimal control models of epithelial-mesenchymal transition for the design of pancreas cancer combination therapy
用于设计胰腺癌联合治疗的上皮-间质转化的最佳控制模型
- 批准号:
10450032 - 财政年份:2019
- 资助金额:
$ 6.36万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 6.36万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 6.36万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 6.36万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 6.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 6.36万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 6.36万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 6.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




