Promoting Receptor Protein Tyrosine Phosphatase Activity by TargetingTransmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
基本信息
- 批准号:10601618
- 负责人:
- 金额:$ 6.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-20 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcidityAffectAgonistAuthorshipAwardBindingBiologicalBiological AssayBiologyCell LineCellsComplementComputer ModelsDataDevelopmentDevelopment PlansDimerizationDisease ProgressionEpidermal Growth Factor ReceptorFamilyGoalsHealthHeterodimerizationHomodimerizationHumanKnowledgeLeadLengthLigandsLigationMammalian CellManuscriptsMass Spectrum AnalysisMeasurementMediatingMentorsMethodsModelingMolecularMusMutation AnalysisNatureOncogenicOutcomePTPRJ geneParentsPeptidesPhasePhenotypePhosphoric Monoester HydrolasesPhosphorylationPlayPropertyProtein Tyrosine PhosphataseReceptor Protein-Tyrosine KinasesRegulationReporterReportingResearchResearch ActivityResearch TrainingResistanceRoleSeriesSignal PathwaySignal TransductionSolidStructure-Activity RelationshipSystems BiologyTertiary Protein StructureTestingTrainingTransmembrane DomainTyrosine Kinase InhibitorVariantWorkbasecareercareer developmentdesignextracellularinsightinterestmeetingsmembermultidisciplinarymutantnovel therapeutic interventionparent grantprotein expressionreceptorresponsescreeningsymposiumtherapeutic targettraffickingtumortumor xenograft
项目摘要
PROJECT SUMMARY
Receptor protein tyrosine phosphatases (RPTPs) play critical signaling regulatory roles in development, health,
and disease progression. Despite the clear importance of RPTPs in signal transduction, very little is known
about the structure-function relationships that underpin the regulation of their activity. The reported ability of
RPTP homodimerization to antagonize their catalytic activity, however, presents potential opportunities to
develop strategies to promote RPTP activity against their oncogenic receptor tyrosine kinase (RTK) substrates.
We recently showed, using PTPRJ/EGFR as a model RPTP/RTK pair, that: (i) homodimerization of PTPRJ
(also known as DEP1) is regulated by transmembrane domain interactions, and (ii) disrupting these
interactions can antagonize PTPRJ homodimerization, reduce substrate EGFR phosphorylation, and
antagonize EGFR-driven cell phenotypes.
Here, we propose to build upon these new insights along three thematically interconnected, but
non-overlapping, specific aims, with the ultimate goals of: (1) demonstrating that RPTP TM domain interactions
are essential in regulating their activity and substrate access, and (2) developing a new therapeutic approach
to promote RPTP activity against their oncogenic RTK substrates.
In our first aim, we will determine the molecular determinants regulating the heterodimerization of PTPRJ with
EGFR. These studies will be complemented by extending them to understand how PTPRJ TM domain mutants
affect receptor trafficking and ultimate cell outcomes. In the second aim, we will design and select peptides
capable of binding to PTPRJ TM domains and test their ability to disrupt PTPRJ homodimerization, promote
PTPRJ activity against EGFR and other substrate RTKs, and selectively target human tumor xenografts in
mice. In the third aim, we will identify other candidate RTK substrates whose regulation by PTPRJ depends
upon TM domain-mediated heterodimerization, and determine how different cellular contexts predict the cell
signaling and phenotype outcome of interfering with PTPRJ dimerization through TM domains. To do so, we
will implement a systems biology approach based on data-driven computational modeling of phenotypic
measurements and global mass spectrometry measurements of protein phosphorylation and expression in a
panel of cell lines. This aim is motivated by an understanding that all RPTPs have multiple substrates and that
variations in expression of those substrates among cells may lead to different outcomes when PTPRJ
dimerization is disrupted.
Ultimately, the studies proposed here stand to advance both our basic biological understanding of RPTP
biology, which is critically needed, and to lead to new methods to target signaling through oncogenic RTKs that
may be less susceptible to common mechanisms of acquired resistance to RTK inhibitors.
项目总结
受体蛋白酪氨酸磷酸酶(RPTPs)在发育、健康、生长发育等过程中发挥着重要的信号调节作用。
和疾病的进展。尽管RPTPs在信号转导中的重要性显而易见,但人们对此知之甚少。
关于作为其活动调节基础的结构-功能关系。报告的能力
然而,通过RPTP均二聚来对抗它们的催化活性提供了潜在的机会
制定策略以促进RPTP针对其致癌受体酪氨酸激酶(RTK)底物的活性。
最近,我们使用PTPRJ/EGFR作为模型RPTP/RTK对,表明:(I)PTPRJ的同源二聚化
(也称为DEP1)由跨膜结构域相互作用调节,和(Ii)破坏这些
相互作用可以拮抗PTPRJ同源二聚,减少底物EGFR的磷酸化,并
拮抗EGFR驱动的细胞表型。
在这里,我们建议沿着三个相互关联的主题来建立这些新的见解,但是
不重叠的、特定的目标,最终目标是:(1)展示RPTP TM域的相互作用
在调节它们的活性和底物获取方面是必不可少的,以及(2)开发一种新的治疗方法
以促进针对其致癌RTK底物的RPTP活性。
在我们的第一个目标中,我们将确定调节PTPRJ异二聚化的分子决定因素
EGFR。这些研究将通过扩展它们来理解PTPRJ TM结构域突变是如何
影响受体运输和最终细胞结果。在第二个目标中,我们将设计和选择多肽
能够与PTPRJ TM结构域结合并测试它们破坏PTPRJ同源二聚的能力,促进
PTPRJ对EGFR和其他底物RTK的活性,并选择性靶向人肿瘤移植瘤
老鼠。在第三个目标中,我们将确定其他候选RTK底物,其调控取决于PTPRJ
TM结构域介导的异二聚化,并确定不同的细胞环境如何预测细胞
通过TM结构域干扰PTPRJ二聚化的信号和表型结果。为了做到这一点,我们
将实施基于数据驱动的表型计算建模的系统生物学方法
蛋白质磷酸化和表达的测量和全球质谱学测量
细胞系的面板。这一目标的动机是理解所有的RPTP都有多个底物,并且
这些底物在细胞间表达的差异可能会导致PTPRJ时不同的结果
二聚化被打乱了。
最终,这里提出的研究将促进我们对RPTP的基本生物学理解
生物学,这是迫切需要的,并导致通过致癌RTK靶向信号的新方法,
可能对常见的RTK抑制剂获得性耐药机制不太敏感。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew J Lazzara其他文献
Matthew J Lazzara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew J Lazzara', 18)}}的其他基金
EGFR signaling network adaptations to overcome RAS-induced membrane stress in glioblastoma
EGFR信号网络适应克服胶质母细胞瘤中RAS诱导的膜应激
- 批准号:
10525284 - 财政年份:2022
- 资助金额:
$ 6.36万 - 项目类别:
EGFR signaling network adaptations to overcome RAS-induced membrane stress in glioblastoma
EGFR信号网络适应克服胶质母细胞瘤中RAS诱导的膜应激
- 批准号:
10703483 - 财政年份:2022
- 资助金额:
$ 6.36万 - 项目类别:
EGFR signaling network adaptations to overcome RAS-induced membrane stress in glioblastoma
EGFR信号网络适应克服胶质母细胞瘤中RAS诱导的膜应激
- 批准号:
10907884 - 财政年份:2022
- 资助金额:
$ 6.36万 - 项目类别:
Engineering ERK-specificity for cancer suicide gene therapy
工程 ERK 特异性用于癌症自杀基因治疗
- 批准号:
10044569 - 财政年份:2020
- 资助金额:
$ 6.36万 - 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
- 批准号:
10265510 - 财政年份:2020
- 资助金额:
$ 6.36万 - 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
- 批准号:
10098384 - 财政年份:2020
- 资助金额:
$ 6.36万 - 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
- 批准号:
10436341 - 财政年份:2020
- 资助金额:
$ 6.36万 - 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
- 批准号:
10651834 - 财政年份:2020
- 资助金额:
$ 6.36万 - 项目类别:
Promoting Receptor Protein Tyrosine Phosphatase Activity by Targeting Transmembrane Domain Interactions
通过靶向跨膜结构域相互作用促进受体蛋白酪氨酸磷酸酶活性
- 批准号:
10797721 - 财政年份:2020
- 资助金额:
$ 6.36万 - 项目类别:
Optimal control models of epithelial-mesenchymal transition for the design of pancreas cancer combination therapy
用于设计胰腺癌联合治疗的上皮-间质转化的最佳控制模型
- 批准号:
10450032 - 财政年份:2019
- 资助金额:
$ 6.36万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 6.36万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 6.36万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 6.36万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 6.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 6.36万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 6.36万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 6.36万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 6.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




