Interpretable Computational Models of Functional Genomics Data

功能基因组数据的可解释计算模型

基本信息

  • 批准号:
    10453055
  • 负责人:
  • 金额:
    $ 41.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-07 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Understanding how the coordination of cis-regulatory elements (CREs) influences biological processes, such as transcription and alternative splicing, is a major goal in computational genomics. This remains a challenge because CRE activity at any given locus may depend on a host of other factors, including sequence context and/or the presence of other CREs nearby. Recent developments in deep convolutional neural networks (CNNs) have revolutionized our ability to predict regulatory functions from DNA sequence. Unlike previous computational methods based on position-weight matrices, which capture an additive model of CREs, CNNs can, in principle, also learn higher-order dependencies within the CRE, with other CREs, and with the broader sequence context. However, CNNs are essentially black box models, with parameters that don’t have clear biological meaning. Hence it remains a challenge to translate the improved predictions of a CNN to new biological insights. Here we propose to develop three different computational methods that can comprehensively characterize higher-order interactions within CREs and across different CREs from functional genomics data, specifically ChIP-seq and CLIP-seq data publicly available through ENCODE. Each method serves as its own separate Aim and will be developed in parallel. In Aim 1, we will develop a new post hoc model interpretability method based on employing interpretable quantitative models originally developed to understand complex genetic interactions in laboratory- based comprehensive mutagenesis (e.g. multiplex assays of variant effects) to characterize CRE dependencies learned by a CNN, using synthetic sequences to target specific biological hypotheses. In Aim 2, we will develop new CNN architectures where the learned parameters will express higher-order interactions that have direct biological interpretations. In Aim 3, we will combine a Bayesian nonparametric framework for modeling CREs with CNN-based CRE annotations and GPU acceleration to develop new methods for understanding how CREs are specified in the genome. Successful completion of these Aims will provide a leap forward in our understanding of higher-order CRE dependencies that are exploited but have not yet been fully revealed by CNNs. This work will provide the community with: (1) a new suite of open-source computational tools that address the problem of modeling CREs and their dependencies in functional genomics data; and (2) a comprehensive genome-wide catalogue of CRE syntax for transcription factors and RNA-binding proteins that will be hosted on a user-friendly webserver.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter K Koo其他文献

Peter K Koo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter K Koo', 18)}}的其他基金

Reliable post hoc interpretations of deep learning in genomics
基因组学深度学习的可靠事后解释
  • 批准号:
    10638753
  • 财政年份:
    2023
  • 资助金额:
    $ 41.73万
  • 项目类别:
Interpretable Computational Models of Functional Genomics Data
功能基因组数据的可解释计算模型
  • 批准号:
    10698090
  • 财政年份:
    2022
  • 资助金额:
    $ 41.73万
  • 项目类别:

相似海外基金

Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
  • 批准号:
    10797554
  • 财政年份:
    2023
  • 资助金额:
    $ 41.73万
  • 项目类别:
Quantitative and Predictive Analysis of 5' Splice Site Recognition by U1 snRNP using Massively Parallel Arrays
使用大规模并行阵列对 U1 snRNP 5 剪接位点识别进行定量和预测分析
  • 批准号:
    10460136
  • 财政年份:
    2021
  • 资助金额:
    $ 41.73万
  • 项目类别:
Quantitative and Predictive Analysis of 5' Splice Site Recognition by U1 snRNP using Massively Parallel Arrays
使用大规模并行阵列对 U1 snRNP 5 剪接位点识别进行定量和预测分析
  • 批准号:
    10311645
  • 财政年份:
    2021
  • 资助金额:
    $ 41.73万
  • 项目类别:
Uncovering Mechanisms of 5' Splice Site Fidelity
揭示 5 剪接位点保真度的机制
  • 批准号:
    10532793
  • 财政年份:
    2020
  • 资助金额:
    $ 41.73万
  • 项目类别:
How do RNA-binding proteins control splice site selection?
RNA 结合蛋白如何控制剪接位点选择?
  • 批准号:
    BB/T000627/1
  • 财政年份:
    2020
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Research Grant
Mechanism of Splice Site Recognition by the U2AF/SF1 Protein Complex
U2AF/SF1 蛋白复合物的剪接位点识别机制
  • 批准号:
    553974-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 41.73万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Uncovering Mechanisms of 5' Splice Site Fidelity
揭示 5 剪接位点保真度的机制
  • 批准号:
    10316181
  • 财政年份:
    2020
  • 资助金额:
    $ 41.73万
  • 项目类别:
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
  • 批准号:
    10769989
  • 财政年份:
    2019
  • 资助金额:
    $ 41.73万
  • 项目类别:
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
  • 批准号:
    10808389
  • 财政年份:
    2019
  • 资助金额:
    $ 41.73万
  • 项目类别:
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
  • 批准号:
    10585911
  • 财政年份:
    2019
  • 资助金额:
    $ 41.73万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了