Reliable post hoc interpretations of deep learning in genomics

基因组学深度学习的可靠事后解释

基本信息

  • 批准号:
    10638753
  • 负责人:
  • 金额:
    $ 38.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Understanding how the coordination of transcription factors bind to non-coding DNA provides mechanistic insights into transcriptional regulation. Recent developments in deep neural networks (DNNs) have revolutionized our ability to study regulatory genomics. While they have demonstrated improved predictions compared to previous methods based on traditional computational genomics, their low interpretability has earned them a reputation as a black box. To address this gap, post hoc model interpretability methods have emerged to interrogate important features that the network has learned. Of these, attribution maps have demonstrated promise, providing importance scores for each nucleotide in a given sequence; these have a natural interpretation as single-nucleotide variant effects. In principle, attribution maps should contain information to identify motifs that are important for cell-type specific regulatory functions and annotate their positions at base- resolution. However, attribution maps are often noisy in practice; in addition to motifs, they contain spurious importance scores for arbitrary nucleotides for reasons that are not well established. Despite their promise, interpreting a DNN through attribution maps remains challenging. Here we propose three complementary aims that serve to maximize the biological insights that we can achieve from attribution maps for genomic DNNs. In Aim 1, we will develop a model selection framework to identify the optimal DNN from a set of candidate DNNs that yields high generalization performance and interpretable attribution maps. In Aim 2, we will develop robust training strategies based on regularization and data augmentations tailored for genomics, with the broader aim of ensuring that DNNs yield high-quality attribution maps and high generalization. In Aim 3, we will develop and employ interpretable computational methods to directly analyze attribution maps to facilitate discovery of functional motifs and annotate their positions. Each aim will be implemented as open-source software in TensorFlow and PyTorch. As the number of deep learning applications in genomics is rising quickly, the biomedical community will greatly benefit from these user-friendly computational tools by enabling the deployment of robust training and interpretability analysis for any DNN trained on functional genomics assays. This, in turn, will drive new discoveries in cis-regulatory biology across the many biological systems that deep learning has already been applied to and the new applications that will continue to emerge in the future.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter K Koo其他文献

Peter K Koo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter K Koo', 18)}}的其他基金

Interpretable Computational Models of Functional Genomics Data
功能基因组数据的可解释计算模型
  • 批准号:
    10698090
  • 财政年份:
    2022
  • 资助金额:
    $ 38.4万
  • 项目类别:
Interpretable Computational Models of Functional Genomics Data
功能基因组数据的可解释计算模型
  • 批准号:
    10453055
  • 财政年份:
    2022
  • 资助金额:
    $ 38.4万
  • 项目类别:

相似海外基金

SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
  • 批准号:
    2307983
  • 财政年份:
    2023
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了