Untangling the diversity in the genetic architecture of late-onset Alzheimer's disease using single cell multi-omics
利用单细胞多组学揭示迟发性阿尔茨海默病遗传结构的多样性
基本信息
- 批准号:10452296
- 负责人:
- 金额:$ 233.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAffectAfrican ancestryAlzheimer&aposs disease patientAlzheimer&aposs disease riskArchitectureAstrocytesAutopsyBinding SitesBiologicalBrainCRISPR/Cas technologyCatalogsCell NucleusCellsChromatinChromatin StructureClinicalDataData SetDevelopmentDiseaseEthnic groupEuropeanEventFreezingGene ExpressionGene Expression RegulationGenesGeneticGenetic DiseasesGenetic TranscriptionGenomicsGenotypeGoalsHi-CIndividualInterventionKnowledgeLate Onset Alzheimer DiseaseMapsMediatingMediationMedicalMicrogliaModelingMolecularNeurofibrillary TanglesNeuronsOutcomePathogenicityPathway AnalysisPathway interactionsPatientsPopulationPopulation GroupPopulation HeterogeneityPositioning AttributePreventive therapyProcessPublishingQuantitative Trait LociRaceRegulator GenesRegulatory ElementRiskSamplingSignal TransductionSiteSubgroupSymptomsTestingTissuesTranslatingUntranslated RNAVariantXCL1 genebasebrain cellbrain tissuecausal variantcell typedifferential expressionepigenomeepigenomicsfallsfunctional genomicsgene functiongenetic architecturegenetic associationgenetic variantgenome editinggenome wide association studygenomic platformmolecular targeted therapiesmultiple omicsneuropathologynew therapeutic targetpolygenic risk scorepre-clinicalprogramsrisk varianttranscription factortranscriptometranscriptome sequencingtranscriptomicswhole genome
项目摘要
ABSTRACT
Late Onset Alzheimer's Disease (LOAD) genome wide association studies (GWAS) discovered numerous loci.
But there remains an unmet need to translate the GWAS findings to disease mechanisms through the
identification of the specific genes involved, the causal variants, and the molecular mechanisms by which they
exert their pathogenic effects. Most LOAD-associated SNPs are in noncoding regions pointing to gene
regulation as an important disease mechanism. Another challenge in LOAD genetics is diversity, as most
studies were conducted in subjects from European ancestry, while other populations are largely understudied.
Our central hypothesis is that LOAD-specific epigenomic signatures, as well as noncoding functional genetic
variants result in dysregulation of genes with key roles in LOAD pathogenic biological pathways. While omics
studies using bulk brain tissue from European ancestry donors have produced informative data for a few
genes at LOAD loci, single-cell omics data from brains of patients and controls from diverse populations will
provide new knowledge in unprecedented brain cell-subtype precision across multiple racial and ethnical
groups. We will investigate the relationships between LOAD-specific gene expression, chromatin accessibility
and genetic variability in European and African ancestries by single-nuclei multi-omics approaches following
three specific aims. Aim 1 will generate matched single-nuclei (sn)RNA-seq and ATAC-seq datasets using the
10X Genomics platform (Single Cell Multiome) to characterize cell-subtype specific changes in transcriptomic
and chromatin accessibility landscape, respectively, in LOAD compared to control, that are shared and distinct
across European and African ancestries. Aim 2 will integrate these datasets to identify open/closed chromatin
sites that function as regulatory elements to impact gene expression in LOAD state, which will be then
validated in the relevant cell-subtype using isogenic hiPSC-derived models by CRISPR/Cas9 genome editing.
Aim 3 will identify LOAD specific gene regulatory variants within specific brain cell-subtypes through
integrative single-cell genomics. We will perform expression(e)QTL and chromatin(c)QTL analyses by cell-
subtype focusing specifically on the QTLs that fall within previously published GWAS regions to determine
whether GWAS signals can be explained by the identified regulatory interactions. We will then catalogue the
SNPs that identified as both strong and significant eQTL and cQTL and prioritize those that predicted to
affect transcription factor binding sites. Last, we will validate the top prioritized variants in genome edited
isogenic hiPSC-derived models. Successful accomplishment of these aims is expected to be high impact as it
will advance the understanding of the genetic complexity underpinning LOAD in diverse populations and will
decipher the regulatory elements and the corresponding genes mediating LOAD risk. This knowledge will be
translational by promoting the refinement of Polygenic Risk Scores, and the development of novel therapeutic
targets for LOAD based on manipulation of dysregulated genes.
摘要
晚发性阿尔茨海默病(LOAD)全基因组关联研究(GWAS)发现了许多基因座。
但是,仍然有一个未满足的需求,即通过基因工程将GWAS的发现转化为疾病机制。
鉴定所涉及的特定基因、致病变体以及它们的分子机制,
发挥其致病作用。大多数LOAD相关的SNPs位于非编码区,
作为一种重要的疾病机制。LOAD遗传学的另一个挑战是多样性,因为大多数
这些研究是在欧洲血统的受试者中进行的,而其他人群在很大程度上研究不足。
我们的中心假设是,LOAD特异性表观基因组特征,以及非编码功能性遗传特征,
变异导致在LOAD致病生物学途径中具有关键作用的基因的失调。虽然omics
使用来自欧洲血统捐赠者的大量脑组织进行的研究为一些人提供了信息数据,
LOAD基因座的基因,来自不同人群的患者和对照组大脑的单细胞组学数据,
提供了新的知识,在前所未有的脑细胞亚型精度跨越多个种族和民族,
组我们将研究LOAD特异性基因表达、染色质可及性
和遗传变异性在欧洲和非洲的祖先通过单核多组学方法,
三个具体目标。目标1将使用以下方法生成匹配的单核(sn)RNA-seq和ATAC-seq数据集:
10 X Genomics平台(单细胞多组)用于表征转录组学中细胞亚型特异性变化
和染色质可及性景观,分别在负载相比,控制,这是共享的和不同的
欧洲和非洲的祖先。AIM 2将整合这些数据集以识别开放/闭合染色质
作为调控元件发挥作用以影响LOAD状态下的基因表达的位点,然后将其
通过CRISPR/Cas9基因组编辑使用等基因hiPSC衍生模型在相关细胞亚型中验证。
目标3将通过以下途径鉴定特定脑细胞亚型内的LOAD特异性基因调控变体:
整合性单细胞基因组学我们将通过细胞进行表达(e)QTL和染色质(c)QTL分析。
亚型,特别关注落在先前公布的GWAS区域内的QTL,以确定
GWAS信号是否可以通过识别的调节相互作用来解释。然后我们将对
确定为强且显著eQTL和cQTL的SNP,并优先考虑那些预测
影响转录因子结合位点。最后,我们将验证基因组编辑中最优先的变体,
等基因hiPSC衍生模型。成功实现这些目标预计将产生巨大影响,因为
将促进对不同人群中支持LOAD的遗传复杂性的理解,并将
破译调控元件和介导LOAD风险的相应基因。这些知识将
通过促进多基因风险评分的完善,以及新的治疗药物的开发,
基于对失调基因的操纵的LOAD靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ornit Chiba-Falek其他文献
Ornit Chiba-Falek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ornit Chiba-Falek', 18)}}的其他基金
Lewy body neuropathologies and SNCA gene: variants expression and splicing
路易体神经病理学和 SNCA 基因:变异表达和剪接
- 批准号:
9913947 - 财政年份:2020
- 资助金额:
$ 233.39万 - 项目类别:
Deciphering the regulation of gene expression in the etiology of LOAD
解读 LOAD 病因中基因表达的调控
- 批准号:
9428983 - 财政年份:2017
- 资助金额:
$ 233.39万 - 项目类别:
Deciphering the regulation of gene expression in the etiology of LOAD
解读 LOAD 病因中基因表达的调控
- 批准号:
10200620 - 财政年份:2017
- 资助金额:
$ 233.39万 - 项目类别:
Lewy body neuropathologies and SNCA gene: variants expression and splicing
路易体神经病理学和 SNCA 基因:变异表达和剪接
- 批准号:
8739685 - 财政年份:2013
- 资助金额:
$ 233.39万 - 项目类别:
Lewy body neuropathologies and SNCA gene: variants expression and splicing
路易体神经病理学和 SNCA 基因:变异表达和剪接
- 批准号:
8609956 - 财政年份:2013
- 资助金额:
$ 233.39万 - 项目类别:
Lewy body neuropathologies and SNCA gene: variants expression and splicing
路易体神经病理学和 SNCA 基因:变异表达和剪接
- 批准号:
9326369 - 财政年份:2013
- 资助金额:
$ 233.39万 - 项目类别:
Lewy body neuropathologies and SNCA gene: variants expression and splicing
路易体神经病理学和 SNCA 基因:变异表达和剪接
- 批准号:
9120430 - 财政年份:2013
- 资助金额:
$ 233.39万 - 项目类别:
Role of the TOMM40 poly-T variant in the pathogenesis of Alzheimer's disease
TOMM40多聚T变体在阿尔茨海默病发病机制中的作用
- 批准号:
9057412 - 财政年份:2013
- 资助金额:
$ 233.39万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 233.39万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 233.39万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 233.39万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 233.39万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 233.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 233.39万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 233.39万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 233.39万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 233.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 233.39万 - 项目类别:
Studentship














{{item.name}}会员




