Wearable real-time functional brain mapping for a non-human primate stroke model
用于非人类灵长类中风模型的可穿戴实时功能性大脑绘图
基本信息
- 批准号:10452501
- 负责人:
- 金额:$ 57.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAcuteAlzheimer&aposs DiseaseAnimal BehaviorAnimal ModelAnimalsAreaAutopsyBehaviorBehavioralBloodBlood VolumeBlood flowBrainBrain MappingBrain imagingBrain regionCause of DeathCephalicChronicDevelopmentDiseaseEpilepsyFailureFunctional ImagingFunctional Magnetic Resonance ImagingFunctional disorderHumanImageImaging technologyImplantIndustryIschemic StrokeLateralLightLinkLongitudinal StudiesMacaca mulattaMapsMetabolic MarkerMicroelectrodesModalityModelingMonitorMonkeysMorphologic artifactsMotionMotorMotor CortexOpticsOutcomeOxygen ConsumptionParkinson DiseasePerfusionPharmaceutical PreparationsPlayPre-Clinical ModelProcessReal-Time SystemsRecommendationRecoveryResearchResolutionRodentRoleStrokeSurfaceSystemTechniquesTechnologyThalamic structureTimeTrainingTranslatingUltrasonic TransducerUnited StatesUnited States National Institutes of HealthVascular remodelingVisualizationabsorptionawakebasebrain researchcerebral arterycerebrovascularclinically relevantcostdesigndisabilityefficacious treatmenthemodynamicsimaging approachimaging modalityimaging platformimaging probeimaging systemin vivomethod developmentnonhuman primatephotoacoustic imagingpost strokepreclinical studyrelating to nervous systemresponsesoundstroke modelstroke therapysuccesstemporal measurementtherapy developmenttool
项目摘要
ABSTRACT
Non-human primate (NHP) models have been recommended as ideal animal models for preclinical,
translational stroke research by the Stroke Therapy Academic Industry Roundtable (STAIR) committee due to
translational failures in rodents and significant cerebrovascular, neuroanatomical and biomolecular similarities
between NHPs and humans. In response to this recommendation, Dr. Nudo (one of PIs on the current proposal),
has pioneered and further developed NHP stroke models in the past few decades. Although clinically-relevant
NHP stroke models are now available, limitations in imaging modalities that can map neural activates in deep
brains of awake monkeys are hindering the current research. Functional magnetic resonance imaging (fMRI)
has been widely used to detect functional changes in the brain. However, this technique is limited by poor
temporal and spatial resolution when collecting functional information. Particularly, for brain research involving
awake, behaviorally active monkeys, the limited temporal resolution of fMRI can be a significant barrier because
of motion artifacts. Alternatively, many studies have used chronic, invasive microelectrode implants for recording
action potential and local field potentials in awake monkeys; however, microelectrode electrical recording is quite
invasive, has poor spatial resolution, and does not provide depth-resolved information.
We propose to develop a wearable, whole brain imaging system based on the emerging photoacoustic (PA)
imaging (PAI) for ischemic stroke research with NHP models. Ischemic stroke is characterized by changes in
hemodynamics in the brain. Triggered by the occlusion of a major cerebral artery or its branches, ischemic stroke
leads to cerebrovascular adaptations both acutely and chronically. PAI, based on optical absorption contrast, is
intrinsically sensitive to the changes in brain hemodynamics including both blood volume (perfusion) and blood
oxygenation (oxygen consumption). Therefore, PAI offers excellent ability to understand the acute and chronic
cerebrovascular adaption after stroke, as well as hemodynamic changes resulting from functional activation in
the brain. Built on our strong expertise in PA brain imaging, especially in PAI of an awake behaviorally active
rhesus monkey, we propose to develop a real-time wearable PA brain imaging system that can be used for deep
brain mapping through a cranial window. By utilizing state-of-the-art capacitive micromachined ultrasonic
transducer (CMUT) technology, the proposed PAI technology can provide depth-resolved functional information
in deep brain regions in real-time with high spatial resolution. Two aims are proposed: 1) Evaluate and optimize
a wearable, multi-wavelength CMUT-based PAI system for real-time visualization of functional activation in the
NHP brain; and 2) Image changes in brain functional activations and cerebrovascular adaptations in an NHP
stroke model in a longitudinal study. The success of this study will provide answers to important scientific
questions about stroke with NHP models, and pave the way for new stroke therapy development.
抽象的
非人灵长类动物(NHP)模型已被推荐为临床前、
中风治疗学术产业圆桌会议 (STAIR) 委员会的转化性中风研究
啮齿类动物的翻译失败以及显着的脑血管、神经解剖学和生物分子相似性
NHP 和人类之间。为了回应这一建议,Nudo 博士(当前提案的 PI 之一),
在过去的几十年里,开创并进一步发展了 NHP 中风模型。尽管与临床相关
NHP 中风模型现已可用,但成像方式的局限性无法绘制深层神经活动图
清醒猴子的大脑正在阻碍当前的研究。功能磁共振成像 (fMRI)
已被广泛用于检测大脑功能变化。然而,该技术受到较差的限制
收集功能信息时的时间和空间分辨率。特别是对于涉及大脑的研究
对于清醒、行为活跃的猴子来说,功能磁共振成像有限的时间分辨率可能是一个重大障碍,因为
运动伪影。或者,许多研究使用慢性、侵入性微电极植入来记录
清醒猴子的动作电位和局部场电位;然而,微电极电记录相当
侵入性,空间分辨率差,并且不提供深度分辨信息。
我们建议开发一种基于新兴光声(PA)的可穿戴全脑成像系统
使用 NHP 模型进行缺血性中风研究的成像 (PAI)。缺血性中风的特点是
大脑中的血流动力学。由大脑大动脉或其分支闭塞引发,缺血性中风
导致脑血管的急性和慢性适应。 PAI,基于光吸收对比,
对大脑血流动力学的变化(包括血容量(灌注)和血液)本质上敏感
氧合(耗氧量)。因此,PAI 提供了了解急性和慢性疾病的卓越能力。
中风后的脑血管适应,以及功能激活引起的血流动力学变化
大脑。建立在我们在 PA 脑成像方面的强大专业知识之上,特别是在清醒行为活跃的 PAI 方面
恒河猴,我们建议开发一种实时可穿戴 PA 脑成像系统,可用于深度
通过颅窗绘制大脑图。通过利用最先进的电容式微机械超声波
传感器(CMUT)技术,提出的PAI技术可以提供深度分辨的功能信息
具有高空间分辨率的实时大脑深部区域。提出两个目标:1)评估和优化
基于 CMUT 的可穿戴多波长 PAI 系统,用于实时可视化功能激活
NHP 大脑; 2) NHP 中大脑功能激活和脑血管适应的图像变化
纵向研究中的中风模型。这项研究的成功将为重要的科学问题提供答案
关于 NHP 模型中风的问题,并为新中风治疗的发展铺平道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Randolph J. Nudo其他文献
Boost for movement
助力运动
- DOI:
10.1038/527314a - 发表时间:
2015-11-18 - 期刊:
- 影响因子:48.500
- 作者:
Randolph J. Nudo - 通讯作者:
Randolph J. Nudo
Boost for movement
助力运动
- DOI:
10.1038/527314a - 发表时间:
2015-11-18 - 期刊:
- 影响因子:48.500
- 作者:
Randolph J. Nudo - 通讯作者:
Randolph J. Nudo
Randolph J. Nudo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Randolph J. Nudo', 18)}}的其他基金
Wearable real-time functional brain mapping for a non-human primate stroke model
用于非人类灵长类中风模型的可穿戴实时功能性大脑绘图
- 批准号:
10194630 - 财政年份:2020
- 资助金额:
$ 57.06万 - 项目类别:
Wearable real-time functional brain mapping for a non-human primate stroke model
用于非人类灵长类中风模型的可穿戴实时功能性大脑绘图
- 批准号:
10656378 - 财政年份:2020
- 资助金额:
$ 57.06万 - 项目类别:
Kansas University Training Program in Neurological and Rehabilitation Sciences
堪萨斯大学神经学和康复科学培训项目
- 批准号:
8666295 - 财政年份:2009
- 资助金额:
$ 57.06万 - 项目类别:
Kansas University Training Program in Neurological and Rehabilitation Sciences
堪萨斯大学神经学和康复科学培训项目
- 批准号:
10393526 - 财政年份:2009
- 资助金额:
$ 57.06万 - 项目类别:
Kansas University Training Program in Neurological and Rehabilitation Sciences
堪萨斯大学神经学和康复科学培训项目
- 批准号:
7810657 - 财政年份:2009
- 资助金额:
$ 57.06万 - 项目类别:
Kansas University Training Program in Neurological and Rehabilitation Sciences
堪萨斯大学神经学和康复科学培训项目
- 批准号:
10152631 - 财政年份:2009
- 资助金额:
$ 57.06万 - 项目类别:
Kansas University Training Program in Neurological and Rehabilitation Sciences
堪萨斯大学神经学和康复科学培训项目
- 批准号:
8071149 - 财政年份:2009
- 资助金额:
$ 57.06万 - 项目类别:
Kansas University Training Program in Neurological and Rehabilitation Sciences
堪萨斯大学神经学和康复科学培训项目
- 批准号:
10615043 - 财政年份:2009
- 资助金额:
$ 57.06万 - 项目类别:
Kansas University Training Program in Neurological and Rehabilitation Sciences
堪萨斯大学神经学和康复科学培训项目
- 批准号:
8264184 - 财政年份:2009
- 资助金额:
$ 57.06万 - 项目类别:
Kansas University Training Program in Neurological and Rehabilitation Sciences
堪萨斯大学神经学和康复科学培训项目
- 批准号:
7627868 - 财政年份:2009
- 资助金额:
$ 57.06万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 57.06万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 57.06万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 57.06万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 57.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 57.06万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 57.06万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 57.06万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 57.06万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 57.06万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 57.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




