Biogenesis of macromolecular machines for post-transcriptional regulation of translation
用于翻译转录后调控的大分子机器的生物发生
基本信息
- 批准号:10454992
- 负责人:
- 金额:$ 37.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-17 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:BiochemicalBiogenesisBiological AssayCellsComplexDataDefectDepositionDiseaseEukaryotaEventGene ExpressionGeneticGenetic TranscriptionGoalsLaboratoriesLeadMediatingMethylationModificationMolecularMutationNerve DegenerationNucleotidesPathway interactionsPatternPerceptionPlayPost-Transcriptional RegulationProcessProductionProtein BiosynthesisProteinsProteomicsPublic HealthRNAReagentRegulationRibonucleoproteinsRibosomal RNARibosomesRoleSiteSmall Nucleolar RNASmall Nucleolar RibonucleoproteinsTextbooksTherapeutic InterventionTranslationsUntranslated RNAYeastscancer typecell growthhuman diseaseinsightnew therapeutic targetnext generation sequencingnovelprotein complexstructural biologytool
项目摘要
Summary:
Ribosomes are highly conserved RNA-protein complexes that direct protein synthesis in all cells. Dysregulation
of ribosome production or function is detrimental to gene expression and underlies several disease states. Over
2% of ribosomal RNA (rRNA) nucleotides are modified. These modifications play a critical role in the proper
production of ribosomes that can accurately perform protein synthesis. The two major rRNA modifications are
2’-O-methylation and pseudouridylation that are directed by highly conserved non-coding RNAs called small
nucleolar RNAs (snoRNAs). Altered levels of snoRNAs are associated with human diseases from
neurodegeneration to multiple types of cancer, underscoring their importance for proper cell growth. Therefore,
a key question is how levels of snoRNAs are regulated and how does their dysregulation lead to translation
defects in disease? Despite the textbook perception that rRNA modifications are equally deposited in all
ribosomes, recent advances in mapping modifications have revealed substoichiometric rRNA modification sites,
strongly suggesting that ribosome assembly and function may be regulated by the modification status of rRNA.
A long-term goal of my laboratory is to identify the post-transcriptional mechanisms that regulate the abundance
of snoRNAs and understand their contribution to cellular translational control. A prominent rRNA modification in
eukaryotes is 2’-O-methylation, the incorporation of which is guided by snoRNAs of the box C/D class. These
snoRNAs interact with a set of evolutionarily conserved proteins to form ribonucleoprotein complexes
(snoRNPs). The assembly of snoRNPs is highly regulated which, in turn, is important to maintain levels of
snoRNAs and to coordinate this process with other cellular events. However, despite their fundamental
importance, much of these regulatory events remains a black box. We have performed targeted yeast mutational
and suppressor screens of snoRNP assembly factors to determine their essential contributions and identify
genetic pathways that mediate snoRNP biogenesis. Our data indicate that regulation of box C/D snoRNP
production by assembly factors is critically important for control of the modification pattern of rRNAs and
dysregulation of this process alters the biogenesis pathway and the fidelity of ribosomes. Our goal is to combine
the novel genetic tools and reagents that we have recently developed with biochemical assays, structural biology,
proteomics, and next-generation sequencing to answer two key questions: 1) How do regulatory factors control
the steady-state levels of snoRNAs required for accurate modification of rRNA?; and 2) How do changes in
snoRNA levels alter and tune protein synthesis? These studies will provide significant insights into the control of
gene expression by snoRNAs at the translation level, and may inform our view of how snoRNA dysregulation
underlies human disease.
概括:
核糖体是高度保守的 RNA-蛋白质复合物,指导所有细胞中的蛋白质合成。失调
核糖体产生或功能的紊乱不利于基因表达,并且是多种疾病状态的基础。超过
2% 的核糖体 RNA (rRNA) 核苷酸被修饰。这些修改在适当的情况下发挥着关键作用
生产可以准确进行蛋白质合成的核糖体。两个主要的 rRNA 修饰是
2'-O-甲基化和假尿苷化由高度保守的非编码 RNA(称为小RNA)引导
核仁 RNA (snoRNA)。 snoRNA 水平的改变与人类疾病有关
神经变性导致多种类型的癌症,强调了它们对正常细胞生长的重要性。所以,
一个关键问题是 snoRNA 的水平如何调节以及它们的失调如何导致翻译
疾病缺陷?尽管教科书认为 rRNA 修饰同等地沉积在所有
核糖体,作图修饰的最新进展揭示了亚化学计量的 rRNA 修饰位点,
强烈表明核糖体的组装和功能可能受到rRNA修饰状态的调节。
我实验室的一个长期目标是确定调节丰度的转录后机制
snoRNA 并了解它们对细胞翻译控制的贡献。一个显着的 rRNA 修饰
真核生物是 2’-O-甲基化,其掺入是由盒 C/D 类的 snoRNA 引导的。这些
snoRNA 与一组进化上保守的蛋白质相互作用形成核糖核蛋白复合物
(snoRNP)。 snoRNP 的组装受到高度调控,这对于维持 snoRNP 的水平非常重要
snoRNA 并协调该过程与其他细胞事件。然而,尽管它们的基本
重要的是,这些监管事件中的大部分仍然是一个黑匣子。我们进行了定向酵母突变
和抑制筛选snoRNP组装因子以确定其基本贡献并识别
介导 snoRNP 生物发生的遗传途径。我们的数据表明框 C/D snoRNP 的调节
组装因子的产生对于控制 rRNA 的修饰模式至关重要
这一过程的失调会改变生物发生途径和核糖体的保真度。我们的目标是结合
我们最近通过生化分析、结构生物学开发的新型遗传工具和试剂,
蛋白质组学和下一代测序回答两个关键问题:1)调控因素如何控制
精确修饰 rRNA 所需的 snoRNA 的稳态水平? 2)如何改变
snoRNA 水平改变和调节蛋白质合成?这些研究将为控制
snoRNA 在翻译水平上的基因表达,并可能告诉我们 snoRNA 失调如何发生的观点
是人类疾病的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Homa Ghalei其他文献
Homa Ghalei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Homa Ghalei', 18)}}的其他基金
Biogenesis of macromolecular machines for post-transcriptional regulation of translation
用于翻译转录后调控的大分子机器的生物发生
- 批准号:
10669201 - 财政年份:2020
- 资助金额:
$ 37.96万 - 项目类别:
Biogenesis of macromolecular machines for post-transcriptional regulation of translation
用于翻译转录后调控的大分子机器的生物发生
- 批准号:
10388877 - 财政年份:2020
- 资助金额:
$ 37.96万 - 项目类别:
Biogenesis of macromolecular machines for post-transcriptional regulation of translation
用于翻译转录后调控的大分子机器的生物发生
- 批准号:
10618662 - 财政年份:2020
- 资助金额:
$ 37.96万 - 项目类别:
Biogenesis of macromolecular machines for post-transcriptional regulation of translation
用于翻译转录后调控的大分子机器的生物发生
- 批准号:
10240673 - 财政年份:2020
- 资助金额:
$ 37.96万 - 项目类别:
Biogenesis of macromolecular machines for post-transcriptional regulation of translation
用于翻译转录后调控的大分子机器的生物发生
- 批准号:
10798922 - 财政年份:2020
- 资助金额:
$ 37.96万 - 项目类别:
Biogenesis of macromolecular machines for post-transcriptional regulation of translation
用于翻译转录后调控的大分子机器的生物发生
- 批准号:
10029053 - 财政年份:2020
- 资助金额:
$ 37.96万 - 项目类别:
相似国自然基金
UMSC-Exo通过调控Ribosome biogenesis诱导心肌再生的策略及机制研究
- 批准号:82370264
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
活体动物线粒体biogenesis、fission及fusion对肝脏再生中能量供应影响机制的研究
- 批准号:81470878
- 批准年份:2014
- 资助金额:73.0 万元
- 项目类别:面上项目
相似海外基金
Biogenesis of the mitochondrial beta-barrel membrane protein at the intermembrane space.
膜间空间线粒体β-桶膜蛋白的生物发生。
- 批准号:
24K18071 - 财政年份:2024
- 资助金额:
$ 37.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
白血病幹細胞におけるRibosomal biogenesisの解明と治療戦略の構築
白血病干细胞核糖体生物发生的阐明和治疗策略的开发
- 批准号:
24H00639 - 财政年份:2024
- 资助金额:
$ 37.96万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
New mechanisms regulating the biogenesis of extracellular vesicles
调节细胞外囊泡生物发生的新机制
- 批准号:
DP240101427 - 财政年份:2024
- 资助金额:
$ 37.96万 - 项目类别:
Discovery Projects
DEL-1 Promotes Biogenesis of Mineralizing Extracellular Vesicles by Mediating Intracellular Calcium Signaling
DEL-1 通过介导细胞内钙信号传导促进矿化细胞外囊泡的生物合成
- 批准号:
24K19876 - 财政年份:2024
- 资助金额:
$ 37.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
MFB: Characterization of the Biogenesis, Uptake, and Cellular Response to the Ribonucleoprotein Cargoes of Extracellular Vesicles using EV-CLASP
MFB:使用 EV-CLASP 表征细胞外囊泡核糖核蛋白货物的生物合成、摄取和细胞反应
- 批准号:
2330665 - 财政年份:2024
- 资助金额:
$ 37.96万 - 项目类别:
Standard Grant
Mechanisms of PIKII-dependent transport during secretory granule biogenesis
分泌颗粒生物发生过程中 PIKII 依赖性运输的机制
- 批准号:
490594 - 财政年份:2023
- 资助金额:
$ 37.96万 - 项目类别:
Operating Grants
MITOCHONDRIA REDOX BIOGENESIS AND METABOLIC RAMAN IMAGING IN INSULIN SIGNALLING
胰岛素信号传导中的线粒体氧化还原生物发生和代谢拉曼成像
- 批准号:
2883511 - 财政年份:2023
- 资助金额:
$ 37.96万 - 项目类别:
Studentship
Changes in structure and biogenesis of Gram-negative envelope following a polymyxin challenge
多粘菌素攻击后革兰氏阴性包膜的结构和生物发生的变化
- 批准号:
BB/X000370/1 - 财政年份:2023
- 资助金额:
$ 37.96万 - 项目类别:
Research Grant
Molecular Mechanisms of Mitochondrial Biogenesis
线粒体生物发生的分子机制
- 批准号:
10735778 - 财政年份:2023
- 资助金额:
$ 37.96万 - 项目类别:














{{item.name}}会员




