Quantitative high-throughput methods for antibody fragment optimization and discovery

用于抗体片段优化和发现的定量高通量方法

基本信息

  • 批准号:
    10454415
  • 负责人:
  • 金额:
    $ 85.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Abstract Monoclonal antibodies and antibody fragments are an important class of therapeutics comprising a $150B industry. However, methods for discovering and optimizing antibodies to have desired affinity are generally laborious laboratory procedures that require months of hands-on research performed by highly skilled personnel (e.g. phage display, hybridoma, single cell). Additionally, the selection of leads to move forward in the therapeutic development pipeline often must be made with limited information that does not necessarily correspond to quantitative binding affinity. To address these challenges, Protillion has commercialized Prot- MaP, a platform for measuring quantitative protein binding across large libraries of 105 to 109 variants on automated instrumentation, with a time-to-result of approximately 2 days. We achieve this by generating immobilized proteins directly on Illumina DNA sequencing flow cells through a process of in-situ transcription and translation. This platform allows for direct, quantitative measurements of fluorescent antigen binding to entire protein libraries at unprecedented scale—a scale that is finally a match for the sparseness of protein function in amino acid mutation space. In our Phase I period, we adapted Prot-MaP to display VHHs (nanobodies) capable of binding the SARS-CoV-2 spike (S1) receptor binding domain (RBD) protein. Our multi-step optimization first comprehensively identified “beneficial” mutations, which were then combined into a second combinatorial library. This strategy identified tens of thousands of protein variants with affinity superior to wild type, with the best exhibiting the highest reported binding affinity for a VHH to this target, a 100-fold improvement from the starting point. We also developed a strategy to humanize this nanobody, producing a near-fully-human sequence that maintained high affinity. In Phase II, we will first improve automation and commercial scalability of our instrumentation, and develop deep learning models for library design and selection of therapeutic leads. We will next optimize other SARS-CoV-2 S1 RBD-binding nanobodies, as well as nanobodies capable of binding PD-L1, a target relevant to cancer immunotherapy. We will develop a universally applicable pipeline for identifying high-affinity, humanized, clinically-relevant VHH reagents. We will also extend our display capabilities to larger, scFv domains, and carry out scFv affinity optimization against two separate target ligands, including SARS-CoV-2 S1 RBD. Finally, we will adapt our methods to display up to 109 distinct protein variants on a NovaSeq sequencing chip, a scale sufficient to identify binders de novo from naïve humanized VHH libraries. The activities outlined in this proposal will enable display multiple types of antibody fragments, optimize affinity and humanize their sequences, and clearly define the landscape of functional protein sequences. The capability of de novo discovery of new binders from untargeted libraries will make the Protillion platform a vertically integrated “one stop shop” allowing both identification of “hits” from untargeted libraries, as well as detailed mutational analysis and optimization of these variants.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Curtis Layton其他文献

Curtis Layton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Curtis Layton', 18)}}的其他基金

Quantitative high-throughput methods for antibody fragment optimization and discovery
用于抗体片段优化和发现的定量高通量方法
  • 批准号:
    10325926
  • 财政年份:
    2020
  • 资助金额:
    $ 85.53万
  • 项目类别:
Large-Scale, Quantitative Protein Affinity Assays on a High-Throughput DNA Sequencing Chip
在高通量 DNA 测序芯片上进行大规模定量蛋白质亲和力测定
  • 批准号:
    10007027
  • 财政年份:
    2020
  • 资助金额:
    $ 85.53万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 85.53万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 85.53万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 85.53万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 85.53万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 85.53万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 85.53万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 85.53万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 85.53万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 85.53万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 85.53万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了