Spatial and Temporal Role of the Runx3 Transcription Factor in Secondary Fracture Healing

Runx3 转录因子在二次骨折愈合中的时空作用

基本信息

  • 批准号:
    10454763
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Clinical Dilemma: The frequency of impaired fracture healing is increased with aging as well as in the presence of other patient-related factors such as smoking, osteoporosis, and diabetes. Treatment of fractures in this setting continues to pose a significant economic burden on the US healthcare system due to increases in time lost from work as well as increases in the expenses associated with fracture-associated complications. While various bone anabolic drugs are successful in increasing homeostatic bone mass in osteoporotic patients and decreasing fracture incidence, they have not demonstrated significant success in enhancing fracture repair. Therefore, identifying novel molecular targets to accelerate secondary fracture healing in this very common setting remains of paramount importance. Relevance to the VA: According to the Office of VA Inspector General report in 2010, osteoporotic patients who suffered a single fracture present a higher incidence of subsequent fractures (20-fold increase) than unaffected populations. Impaired or delayed bony union following fracture of long bones prevents or delays a significant percentage of VA patients from resuming their daily activities and returning to work. Ineffective treatment of these fractures maximizes the economic burden on the VA healthcare system. Identifying novel molecular targets to enhance secondary bone repair remains of paramount importance. The objective of this translational research application is to enhance secondary fracture healing by targeting novel regulatory pathways that enhance periosteal cell-induced osteogenesis and angiogenesis during fracture callus formation. Scientific premise: We provide compelling preliminary evidence of the following: 1. Runx3 is expressed in chondrocytes, osteoblasts and osteocytes of C57BL6j murine long bones. 2. Runx3 expression levels are increased in soft cartilaginous calluses and subsequently decreased in bony calluses of murine femoral fractures. 3. Conditional deletion of Runx3 in periosteal cells (cKO) resulted in enhanced secondary bone healing as evidenced by histological, histomorphometric, and molecular analyses. 4. The cellular mechanisms underlying these positive effects on secondary bone healing implicate increased osteogenesis as well as angiogenesis of fractured periosteal cells from Runx3 cKO compared to control mice. 5. Use of multiphoton microscopy demonstrate the feasibility of tracking Prx1+ skeletal progenitor cells during bone repair and longitudinally monitor the bone healing process for lineage tracing experiments. Here we hypothesize that Runx3 is a molecular switch that controls the transition from cartilaginous to bony callus, and its deletion in the chondrogenic cell lineage will accelerate secondary fracture healing. To verify this hypothesis, we propose to first establish the effects of stage-specific repression of Runx3 on secondary fracture healing (Aim 1). We will then determine the mechanisms via which Runx3 controls mesenchymal cell differentiation into the chondro/osteogenic lineages (Aim 2). Finally, we will assess the efficacy of Runx3 inhibition during fracture repair in control C57BL6 mice through controlled and sustained delivery of miRNA encapsulated hydrogel and examine the rate of bone healing and biomechanical strength of healed bone (Aim 3). Impact: Defining the pathways that governthe transition from soft to bony callus will help identify new therapies to accelerate secondary fracture healing. Here, we will establish Runx3 as a novel therapeutic target.
临床难题:骨折愈合受损的频率随着年龄的增长而增加, 存在其他患者相关因素,如吸烟、骨质疏松症和糖尿病。骨折治疗 在这种情况下,由于增加, 工作时间损失以及与心脏病相关并发症相关的费用增加。 虽然各种骨合成代谢药物在增加骨质疏松症患者的稳态骨量方面是成功的, 患者和降低骨折发生率,他们没有表现出显着的成功,提高 骨折修复因此,鉴定新的分子靶点以加速这种继发性骨折愈合, 非常普通的环境仍然是最重要的。 与VA的相关性:根据VA监察长办公室2010年的报告, 发生单一骨折的患者出现后续骨折的发生率(增加20倍)高于 未受影响的人群。长骨骨折后骨愈合受损或延迟会阻止或延迟骨折愈合。 很大比例的VA患者无法恢复日常活动并重返工作岗位。无效 这些骨折的治疗使VA保健系统的经济负担最大化。鉴定新 增强二次骨修复的分子靶点仍然是最重要的。的目的 转化研究应用是通过靶向新的调节因子来增强继发性骨折愈合, 在骨折骨痂形成过程中增强骨膜细胞诱导的骨生成和血管生成的途径。 科学前提:我们提供以下令人信服的初步证据: 1. Runx 3在C57 BL 6 j小鼠长骨的软骨细胞、成骨细胞和骨细胞中表达。 2. Runx 3表达水平在软软骨愈伤组织中增加,随后在骨组织中降低。 小鼠股骨骨折的骨痂。 3.骨膜细胞中Runx 3的条件性缺失(cKO)导致继发性骨愈合增强, 通过组织学、组织形态计量学和分子分析证实。 4.这些对继发性骨愈合的积极作用的细胞机制涉及增加 与对照相比,来自Runx 3 cKO的骨折骨膜细胞的骨生成以及血管生成 小鼠 5.多光子显微镜的使用证明了追踪Prx 1+骨骼祖细胞在 骨修复和纵向监测骨愈合过程用于谱系追踪实验。 在这里,我们假设Runx 3是一个分子开关,控制着从软骨到软骨的转变。 骨骨痂,其缺失的软骨细胞谱系将加速继发性骨折 治愈 为了验证这一假设,我们建议首先建立Runx 3阶段特异性抑制对 继发性骨折愈合(目标1)。然后,我们将确定Runx 3控制的机制 间充质细胞分化为软骨/成骨谱系(Aim 2)。最后,我们将评估 对照C57 BL 6小鼠骨折修复过程中Runx 3抑制的功效 递送miRNA包封的水凝胶,并检查骨愈合速率和生物力学强度。 骨愈合(目标3)。 影响:定义从软到骨性骨痂过渡的途径将有助于确定新的治疗方法 加速继发性骨折愈合在这里,我们将Runx 3作为一个新的治疗靶点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HICHAM M DRISSI其他文献

HICHAM M DRISSI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HICHAM M DRISSI', 18)}}的其他基金

Role of IL-17 receptor A in aging bone remodeling
IL-17受体A在衰老骨重塑中的作用
  • 批准号:
    10719356
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Bone anabolic effects of osteoclast-produced phospho-Wnt5a
破骨细胞产生的磷酸化 Wnt5a 的骨合成代谢作用
  • 批准号:
    10929243
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Advances in Musculoskeletal & Neuronal Interactions
肌肉骨骼的进展
  • 批准号:
    10318837
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Control of intervertebral disc degeneration via matrix-mediated delivery of platelet-derived growth factors
通过基质介导的血小板衍生生长因子的传递来控制椎间盘退变
  • 批准号:
    10377961
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Control of intervertebral disc degeneration via matrix-mediated delivery of platelet-derived growth factors
通过基质介导的血小板衍生生长因子的传递来控制椎间盘退变
  • 批准号:
    10614929
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
CMA: Cartilage Repair Strategies to Alleviate Arthritic Pain (CaRe AP): Novel cell-based therapies to increase functional outcomes and alleviate pain in preclinical models of osteoarthritis
CMA:减轻关节炎疼痛的软骨修复策略 (CaRe AP):基于新型细胞的疗法,可提高骨关节炎临床前模型的功能结果并减轻疼痛
  • 批准号:
    10514601
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
CMA: Cartilage Repair Strategies to Alleviate Arthritic Pain (CaRe AP): Novel cell-based therapies to increase functional outcomes and alleviate pain in preclinical models of osteoarthritis
CMA:减轻关节炎疼痛的软骨修复策略 (CaRe AP):基于新型细胞的疗法,可提高骨关节炎临床前模型的功能结果并减轻疼痛
  • 批准号:
    10292959
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Spatial and Temporal Role of the Runx3 Transcription Factor in Secondary Fracture Healing
Runx3 转录因子在二次骨折愈合中的时空作用
  • 批准号:
    10618866
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
CMA: Cartilage Repair Strategies to Alleviate Arthritic Pain (CaRe AP): Novel cell-based therapies to increase functional outcomes and alleviate pain in preclinical models of osteoarthritis
CMA:减轻关节炎疼痛的软骨修复策略 (CaRe AP):基于新型细胞的疗法,可提高骨关节炎临床前模型的功能结果并减轻疼痛
  • 批准号:
    10013786
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Spatial and Temporal Role of the Runx3 Transcription Factor in Secondary Fracture Healing
Runx3 转录因子在二次骨折愈合中的时空作用
  • 批准号:
    9890844
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Endothelial biomechanics in vascular aging
血管老化中的内皮生物力学
  • 批准号:
    10804883
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Biomechanics of the Aging Crystalline Lens
晶状体老化的生物力学
  • 批准号:
    1537027
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Matrix biomechanics and satellite cell aging
基质生物力学和卫星细胞老化
  • 批准号:
    310318
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Joint Capsule Biomechanics and Transport in Rat Models of Aging and Disease
衰老和疾病大鼠模型中关节囊的生物力学和运输
  • 批准号:
    8126899
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
Joint Capsule Biomechanics and Transport in Rat Models of Aging and Disease
衰老和疾病大鼠模型中关节囊的生物力学和运输
  • 批准号:
    8267251
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
Effects of Aging on the Biomechanics of Slips and Falls
衰老对滑倒和跌倒生物力学的影响
  • 批准号:
    6649378
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
Effects of Aging on the Biomechanics of Slips and Falls
衰老对滑倒和跌倒生物力学的影响
  • 批准号:
    6383713
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
Type I Collagen Biomechanics in Aging Vasculature
老化脉管系统中的 I 型胶原生物力学
  • 批准号:
    6333628
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
Effects of Aging on the Biomechanics of Slips and Falls
衰老对滑倒和跌倒生物力学的影响
  • 批准号:
    6582366
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
AGING HUMAN ARTICULAR CARTILAGE--BIOMECHANICS AND REPAIR
老化的人类关节软骨——生物力学与修复
  • 批准号:
    6311469
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了