Biofabrication of Multicompartment Human Liver Tissues for Chemical Screening
用于化学筛选的多室人肝组织的生物制造
基本信息
- 批准号:10457485
- 负责人:
- 金额:$ 19.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcute Liver FailureAdultAffectAnimal ModelAnimalsArchitectureBehaviorBile fluidBiliaryBiochemicalBloodBlood VesselsCell LineCell TherapyCell physiologyCellsChemicalsClinicalCollagenDrug ScreeningEndothelial CellsEngineeringExtracellular MatrixFamily suidaeFilamentFutureGelatinGoalsGrowthGrowth FactorHepaticHepatic Stellate CellHepatocyteHumanHydrogelsImplantIn SituIn VitroInfusion proceduresKupffer CellsLiverMechanicsMetabolismMicrofluidicsModelingNatural regenerationPathway interactionsPatientsPharmaceutical PreparationsPhysiologicalPrintingPropertyProtocols documentationRegenerative MedicineRodent ModelSourceStructureTechniquesTechnologyTestingTissue DonorsTissue EngineeringTissue TransplantationTissuesToxic effectTransformed Cell LineVascularizationbehavioral studybile ductbile formationbiofabricationbioprintingbioscaffoldcell typecholangiocytechronic liver diseasedensitydrug induced liver injurydrug metabolismdrug withdrawalend stage liver diseasehigh rewardhigh riskimplantationin vitro Modelin vivoinduced pluripotent stem cellliver functionmatrigelnovelpre-clinicalscaffoldscreeningshear stresssmall molecule
项目摘要
ABSTRACT / PROJECT SUMMARY
Title: Biofabrication of Multicompartment Human Liver Tissues for Chemical Screening
Drug-induced liver injury (DILI) is a leading cause of preclinical and clinical drug attrition, black box warnings on
drugs, and withdrawals of drugs from the marketplace. Unfortunately, animal models do not always suffice to
evaluate human DILI due to significant species-specific differences in drug metabolism pathways; therefore, in
vitro models of the human liver are being increasingly utilized to evaluate compound (drugs/chemicals)
metabolism and toxicity. However, current in vitro models of the human liver are unable to determine the effects
of compounds on the three major compartments of the liver, namely hepatic, vascular, and biliary, and how
toxicity to one compartment may affect the other compartments. Similarly, while there has been some progress
in developing implantable liver tissue surrogates as cell-based therapies for patients suffering from end-stage
liver failure, such tissues do not contain the above-mentioned liver compartments with physiological
interconnections. Our studies have shown that primary human hepatocytes (PHH) and liver endothelial cells
(LEC) display high levels of in vivo-like functions for 4+ weeks in vitro when organized into 3-dimensional (3D)
extracellular matrix (ECM) microgels that are generated using a high-throughput droplet microfluidics platform
(so-called microtissues). This microtissue technology is uniquely suited to control the microenvironment of liver
cells and could potentially protect cells from the shear stress induced via 3D bioprinting. Furthermore, we have
shown that cholangiocytes display sprouting behavior in decellularized liver ECM (dECM) but not in collagen-I
or Matrigel alone and such sprouting behavior can be directed via 3D bioprinting. In this high-risk/high-reward
R21 proposal, we will leverage these platforms and findings to test the novel hypothesis that a 3D-printed
biomaterial scaffold containing hepatic microtissues and liver dECM can be used to generate liver-like functional
and integrated compartments (vascular, hepatic, and biliary). In aim 1, we will fabricate and characterize 3D-
printed structures containing hepatic microtissues and LEC-lined vascular channels, while in aim 2, we will
incorporate cholangiocytes into the biofabricated structures and investigate the ability to control and detect bile
flow. If successful, our efforts will yield a first-of-its-kind scalable 3D-printed human liver tissue containing
integrated hepatic, vascular, and biliary compartments that displays stable levels of diverse liver functions for
several weeks in vitro. Ultimately, our 3D-printed human liver tissue can be used for investigating the effects of
compounds on all three compartments of the liver and their interactions, as well as for implanting into animal
models as potential cell-based therapy for chronic liver disease and acute liver failure.
摘要/项目总结
标题:用于化学筛选的多室人肝组织生物制剂
药物性肝损伤(DILI)是临床前和临床药物消耗的主要原因,
毒品,以及从市场上撤回毒品。不幸的是,动物模型并不总是足以
由于药物代谢途径存在显著的种属特异性差异,因此,
人类肝脏的体外模型越来越多地用于评价化合物(药物/化学品)
代谢和毒性。然而,目前人类肝脏的体外模型无法确定其影响
化合物对肝脏的三个主要部分,即肝,血管和胆道,以及如何
对一个隔室的毒性可能会影响其他隔室。同样,虽然取得了一些进展,
在开发可植入的肝组织替代物作为基于细胞的疗法,用于患有终末期肝病的患者中,
肝衰竭时,这些组织不含上述具有生理性的肝区室,
相互联系我们的研究表明,原代人肝细胞(PHH)和肝内皮细胞
(LEC)当组织成三维(3D)时,在体外显示高水平的体内样功能4周以上
使用高通量液滴微流体平台产生的细胞外基质(ECM)微凝胶
(所谓的微组织)。这种微组织技术特别适合于控制肝脏的微环境
细胞,并可能保护细胞免受通过3D生物打印诱导的剪切应力。此外,我们还
显示胆管细胞在脱细胞肝ECM(dECM)中显示发芽行为,但在胶原I中不显示发芽行为。
或单独的基质胶,并且这种发芽行为可以通过3D生物打印来指导。在这个高风险/高回报的
R21提案,我们将利用这些平台和研究结果来测试新的假设,即3D打印
含有肝微组织和肝dECM的生物材料支架可用于产生肝样功能性
和整合的隔室(血管、肝脏和胆道)。在目标1中,我们将制造和表征3D-
打印包含肝脏微组织和LEC内衬血管通道的结构,而在目标2中,我们将
将胆管细胞纳入生物制造结构中,并研究控制和检测胆汁的能力,
流如果成功,我们的努力将产生第一个可扩展的3D打印人类肝脏组织,
完整的肝脏、血管和胆道隔室,显示稳定的不同肝功能水平,
几周的体外培养最终,我们的3D打印人类肝脏组织可用于研究
化合物对肝脏所有三个隔室的作用及其相互作用,以及用于植入动物体内
作为慢性肝病和急性肝衰竭的潜在细胞治疗模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Salman R Khetani其他文献
Salman R Khetani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Salman R Khetani', 18)}}的其他基金
Multicellular Organotypic Mouse Model of Alcoholic Liver Disease
酒精性肝病的多细胞器官型小鼠模型
- 批准号:
10667672 - 财政年份:2023
- 资助金额:
$ 19.45万 - 项目类别:
A bio-engineered hepatic niche for ex vivo expansion of HSCs
用于 HSC 离体扩增的生物工程肝脏生态位
- 批准号:
10452482 - 财政年份:2021
- 资助金额:
$ 19.45万 - 项目类别:
A bio-engineered hepatic niche for ex vivo expansion of HSCs
用于 HSC 离体扩增的生物工程肝脏生态位
- 批准号:
10631071 - 财政年份:2021
- 资助金额:
$ 19.45万 - 项目类别:
Biofabrication of Multicompartment Human Liver Tissues for Chemical Screening
用于化学筛选的多室人肝组织的生物制造
- 批准号:
10317252 - 财政年份:2021
- 资助金额:
$ 19.45万 - 项目类别:
A Scalable 3D Human Liver Co-culture Platform for Hepatitis B Virus Infection
用于乙型肝炎病毒感染的可扩展 3D 人类肝脏共培养平台
- 批准号:
9814819 - 财政年份:2019
- 资助金额:
$ 19.45万 - 项目类别:
High-throughput exploration of chemomechanical crosstalk in the maturation of iPSC-derived human hepatocytes
iPSC 衍生的人肝细胞成熟过程中化学机械串扰的高通量探索
- 批准号:
10022330 - 财政年份:2019
- 资助金额:
$ 19.45万 - 项目类别:
Elucidating chemo-mechanical determinants of human hepatocyte and stellate cell responses in non-alcoholic fatty liver disease
阐明非酒精性脂肪肝患者肝细胞和星状细胞反应的化学机械决定因素
- 批准号:
10092152 - 财政年份:2018
- 资助金额:
$ 19.45万 - 项目类别:
Elucidating chemo-mechanical determinants of human hepatocyte and stellate cell responses in non-alcoholic fatty liver disease
阐明非酒精性脂肪肝患者肝细胞和星状细胞反应的化学机械决定因素
- 批准号:
10027053 - 财政年份:2018
- 资助金额:
$ 19.45万 - 项目类别:
Synergistic effects of ECM and heterotypic crosstalk on cellular responses in non-alcoholic fatty liver disease
ECM 和异型串扰对非酒精性脂肪肝细胞反应的协同作用
- 批准号:
10744973 - 财政年份:2018
- 资助金额:
$ 19.45万 - 项目类别:
Functionally maturing iPSC-derived human hepatocytes in 3D microgels
3D 微凝胶中功能成熟的 iPSC 衍生人肝细胞
- 批准号:
9226831 - 财政年份:2017
- 资助金额:
$ 19.45万 - 项目类别:
相似海外基金
Senescent hepatocytes mediate reprogramming of immune cells in acute liver failure
衰老肝细胞介导急性肝衰竭中免疫细胞的重编程
- 批准号:
10679938 - 财政年份:2023
- 资助金额:
$ 19.45万 - 项目类别:
Hepatocytes Encapsulated with mesenchymal stromal cells in alginate microbeads for the treatment of acute Liver failure in Paediatric patients (HELP)
将间充质基质细胞封装在藻酸盐微珠中的肝细胞用于治疗儿科患者的急性肝衰竭(HELP)
- 批准号:
MR/V038583/1 - 财政年份:2022
- 资助金额:
$ 19.45万 - 项目类别:
Research Grant
Development of the innovative treatment using self iPS cell for acute liver failure
开发利用自身 iPS 细胞治疗急性肝衰竭的创新疗法
- 批准号:
21K08685 - 财政年份:2021
- 资助金额:
$ 19.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pediatric Acute Liver Failure Immune Response Network (PALF IRN): Treatment for Immune Mediated Pathophysiology (TRIUMPH)
小儿急性肝衰竭免疫反应网络 (PALF IRN):免疫介导的病理生理学治疗 (TRIUMPH)
- 批准号:
10421290 - 财政年份:2021
- 资助金额:
$ 19.45万 - 项目类别:
Pediatric Acute Liver Failure Immune Response Network (PALF IRN): Treatment for Immune Mediated Pathophysiology (TRIUMPH)
小儿急性肝衰竭免疫反应网络 (PALF IRN):免疫介导的病理生理学治疗 (TRIUMPH)
- 批准号:
10180251 - 财政年份:2021
- 资助金额:
$ 19.45万 - 项目类别:
Therapeutic effect of plasmacytoid dendritic cells transplantation for acute liver failure
浆细胞样树突状细胞移植治疗急性肝衰竭的疗效
- 批准号:
20K21607 - 财政年份:2020
- 资助金额:
$ 19.45万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Macrophage Therapy for Acute Liver Failure
巨噬细胞治疗急性肝衰竭
- 批准号:
MR/T044802/1 - 财政年份:2020
- 资助金额:
$ 19.45万 - 项目类别:
Research Grant
Investigation of an optimal environment for the proliferation of mature hepatocytes toward the rescue of acute liver failure patients
研究成熟肝细胞增殖的最佳环境以挽救急性肝衰竭患者
- 批准号:
19K08475 - 财政年份:2019
- 资助金额:
$ 19.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pediatric Acute Liver Failure (PALF) TReatment for ImmUne Mediated PathopHysiology (TRIUMPH)
小儿急性肝衰竭 (PALF) 免疫介导病理生理学治疗 (TRIUMPH)
- 批准号:
9789253 - 财政年份:2018
- 资助金额:
$ 19.45万 - 项目类别:
Cryopreservation of hiPS-derivd hepatic progenitor cells and application to acute liver failure treatment
hiPS源性肝祖细胞的冷冻保存及其在急性肝衰竭治疗中的应用
- 批准号:
18K08662 - 财政年份:2018
- 资助金额:
$ 19.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




